正方體中,點(diǎn)分別在線段上,且 .以下結(jié)論:①;②;③MN//平面;④MN異面;⑤MN⊥平面.其中有可能成立的結(jié)論的個數(shù)為(    )
A.5B.4 C.3D.2
A

 
垂足是
是平行四邊形;

當(dāng)分別是線段的中點(diǎn)時,分別是的中點(diǎn);此時

當(dāng)點(diǎn)時,在點(diǎn)此時異面;
當(dāng)分別是線段的中點(diǎn)時,故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖四棱錐的底面是正方形,,點(diǎn)E在棱PB上,O為AC與BD的交點(diǎn)。
(1)求證:平面
2)當(dāng)E為PB中點(diǎn)時,求證://平面PDA,//平面PDC。
(3)當(dāng)且E為PB的中點(diǎn)時,求與平面所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a、b為兩條不同的直線,α、β為兩個不同的平面,
且a⊥α,b⊥β,則下列命題中為假命題的是
A.若a∥b,則α∥β
B.若α⊥β,則a⊥b
C.若a,b相交,則α,β相交
D.若α,β相交,則a,b相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分別為棱AB、BC的中點(diǎn),M為棱AA1上的點(diǎn)。
  
(1)證明:A1B1⊥C1D;
(2)當(dāng)的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是地面邊長的倍,P為側(cè)棱SD上的點(diǎn)。
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

判斷下列命題,正確的個數(shù)為(   。
①直線與平面沒有公共點(diǎn),則
②直線平行于平面內(nèi)的一條直線,則;
③直線與平面內(nèi)的無數(shù)條直線平行,則
④平面內(nèi)的兩條直線分別平行于平面,則
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.
(1)求證:平面⊥平面;
(2)求三棱錐的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體中,分別為BC, CC1中點(diǎn),
則異面直線所成角的大小為
                             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間四邊形ABCD各邊AB、BC、CD、DA上分別取E、F、G、H四點(diǎn),如果EF、GH相交于點(diǎn)P,那么(    )
A.點(diǎn)P必在直線AC上 B.點(diǎn)P必在直線BD上
C.點(diǎn)P必在平面DBC內(nèi)              D.點(diǎn)P必在平面ABC外

查看答案和解析>>

同步練習(xí)冊答案