【題目】已知函數(shù)的圖像過點(diǎn),且對任意的都有不等式成立.若函數(shù)有三個不同的零點(diǎn),則實數(shù)的取值范圍是__________________.
【答案】
【解析】
首先由函數(shù)的性質(zhì)確定函數(shù)的解析式,然后將原問題轉(zhuǎn)化為兩個函數(shù)有三個交點(diǎn)的問題,考查臨界條件,求得臨界值即可確定實數(shù)的取值范圍.
注意到時,,
即是函數(shù)的切線,且切點(diǎn)坐標(biāo)為,
據(jù)此結(jié)合題意可知:是函數(shù)的切線,且切點(diǎn)坐標(biāo)為,
由函數(shù)的解析式有,故:
,解得:,
則函數(shù)的解析式為,
函數(shù)有三個不同的零點(diǎn),
則函數(shù)與函數(shù)有三個不同的交點(diǎn),
注意到,
繪制函數(shù)圖像如圖所示,考查如圖所示的臨界情況,
當(dāng)函數(shù)與函數(shù)只有兩個交點(diǎn)時:
若一次函數(shù)過點(diǎn),則:且,解得;
若一次函數(shù)過點(diǎn),則:且,解得;
若一次函數(shù)與二次函數(shù)在區(qū)間內(nèi)相切,
由可得,
設(shè)切點(diǎn)坐標(biāo)為,則切線的斜率為:,
切線方程為:,
整理可得:,
由于,考查一次函數(shù)斜率與軸截距的關(guān)系可得:
,解得:,
則切線的斜率為:.
綜上可得:實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)滿足,記點(diǎn)的軌跡為.斜率為的直線過點(diǎn),且與軌跡相交于兩點(diǎn).
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點(diǎn),使得無論直線繞點(diǎn)怎樣轉(zhuǎn)動,總有成立?如果存在,求出定點(diǎn);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,∥,,平面平面,且.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的大;
(Ⅲ)已知點(diǎn)在棱上,且異面直線與所成角的余弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點(diǎn),E是BD的中點(diǎn).
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋里裝有編號為1,2,3,4的四個小球,有放回的抽取兩次,記錄兩次取到小球的編號分別為,.獎勵規(guī)則如下:
①若,則獎勵玩具一個;
②若,則獎勵水杯一個;
③其余情況獎勵飲料一瓶.
小亮準(zhǔn)備參加此項活動.
(Ⅰ)求小亮獲得玩具的概率;
(Ⅱ)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線與軸的交點(diǎn)為,與的交點(diǎn)為,且.
(Ⅰ)求的方程;
(Ⅱ)設(shè)過定點(diǎn)的直線與拋物線交于,兩點(diǎn),連接并延長交拋物線的準(zhǔn)線于點(diǎn),當(dāng)直線恰與拋物線相切時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com