已知向量
a
=(1,cosα),
b
=(2,1)且
a
b
,則銳角α的大小為( 。
A、
π
6
B、
π
3
C、
π
4
D、
12
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:由條件利用兩個(gè)向量共線的性質(zhì)可得1-2cosα=0,求得cosα 的值,可得銳角α.
解答: 解:∵向量
a
=(1,cosα),
b
=(2,1)且
a
b
,
∴1-2cosα=0,求得cosα=
1
2
,則銳角α=
π
3
,
故選:B.
點(diǎn)評(píng):本題主要考查兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD⊥BC,D為垂足,AD在△ABC的外部,且BD:CD:AD=2:3:6,則tan∠BAC=( 。
A、1
B、
1
7
C、
1
5
D、
5
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)在區(qū)間[2,5]上為減函數(shù),且有最大值7,則它在區(qū)間[-5,-2]上( 。
A、是減函數(shù),有最大值-7
B、是減函數(shù),有最小值-7
C、是增函數(shù),有最大值-7
D、是增函數(shù),有最小值-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
π
6
+α)=
3
2
,則cos(
π
3
-α)等于(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為圓C1:x2+y2=9上任意一點(diǎn),Q為圓C2:x2+y2=25上任意一點(diǎn),PQ中點(diǎn)組成的區(qū)域?yàn)镸,在C2內(nèi)部任取一點(diǎn),則該點(diǎn)落在區(qū)域M上的概率為( 。
A、
13
25
B、
3
5
C、
13
25π
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,且滿足:f(x)是偶函數(shù),f(x-1)是奇函數(shù),若f(-0.5)=9,則f(2012)+f(2014)+f(2.5)+f(1.5)等于( 。
A、-18B、-9C、0D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足:
x-2y+1≥0
x<2
x+y-1≥0
,z=|2x-2y-1|,則z的取值范圍是( 。
A、[
5
3
,5]
B、[0,5]
C、[0,5)
D、[
5
3
,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.設(shè)向量
m
=(a,c),
n
=(cosC,cosA).
(1)若
m
n
,c=
3
a,求角A;
(2)若
m
n
=3bsinB,cosA=
4
5
,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC的頂點(diǎn)都在同一球面上,PA⊥平面ABC,∠ABC=150°,PA=1,AC=2,則該球的表面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案