請選做一題,都做時按先做的題判分,都做不加分.

(1)已知向量

①求函數(shù)的最小正周期和值域;

②在△ABC中,角A、B、C所對的邊分別是a、b、c,若,試判斷△ABC的形狀.

(2)已知銳角.

①求證:;

②設(shè),求AB邊上的高CD的長.

 

 

 

 

【答案】

 (1)①,值域為[—2,2].… ………5分

②△ABC為等邊三角形.   ……………                                …10分

(2) ①由展開可整理得:

……5分

,

    …      ……10分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

請選做一題,都做時按先做的題判分,都做不加分.
(1)已知向量
m
=(2sinx,cosx-sinx),
n
=(
3
cosx,cosx+sinx)
,函數(shù)f(x)=
m
n

①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對的邊分別是a、b、c,若f(
A
2
)=2
且a2=bc,試判斷△ABC的形狀.
(2)已知銳角△ABC,sin(A+B)=
3
5
,sin(A-B)=
1
5

①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則按做的第一題評閱計分)
(1)(極坐標(biāo)與參數(shù)方程)在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數(shù),r>0).以O(shè)為極點,x軸正半軸為極軸,并取相同的單位長度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=1
.當(dāng)圓C上的點到直線l的最大距離為4時,圓的半徑r=
1
1

(2)(不等式)對于任意實數(shù)x,不等式|2x+m|+|x-1|≥a恒成立時,若實數(shù)a的最大值為3,則實數(shù)m的值為
4或-8
4或-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省鄭州外國語學(xué)校高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題

請選做一題,都做時按先做的題判分,都做不加分.
(1)已知向量,函數(shù)
①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對的邊分別是a、b、c,若且a2=bc,試判斷△ABC的形狀.
(2)已知銳角
①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省全真模擬(二)數(shù)學(xué)(理科)試題 題型:解答題

(本小題滿分10分)請選做一題,都做時按先做的題判分,都做不加分.

(1)已知向量

①求函數(shù)的最小正周期和值域;

②在△ABC中,角A、B、C所對的邊分別是a、b、c,若,試判斷△ABC的形狀.

(2)已知銳角.

①求證:

②設(shè),求AB邊上的高CD的長.

 

查看答案和解析>>

同步練習(xí)冊答案