【題目】閱讀下邊的程序框圖,若輸入的n100,則輸出的變量ST的值依次是_____.

【答案】2 550,2 500

【解析】模擬執(zhí)行程序框圖,可得n=100,S=0,T=0;

不滿足條件n<2,S=100,n=99,T=99,n=98;

不滿足條件n<2,S=100+98,n=97,T=99+97,n=96;

不滿足條件n<2,S=100+98+96,n=95,T=99+97+95,n=94;

……

不滿足條件n<2,S=100+98++4,n=3,T=99+97++3,n=2;

不滿足條件n<2,S=100+98++4+2,n=1,T=99+97++3+1,n=0;

滿足條件n<2,退出循環(huán),輸出S,T的值.

由于S=100+98++4+2==2 550,

T=99+97++3+1==2 500,

故答案為2 550,2 500.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角板(如圖1)拼接,將△BCD折起,得到三棱錐A﹣BCD(如圖2).

(1)若E,F(xiàn)分別為AB,BC的中點(diǎn),求證:EF∥平面ACD;
(2)若平面ABC⊥平面BCD,求證:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過三點(diǎn)A(﹣3,2),B(3,﹣6),C(0,3)的圓的方程為( )
A.x2+y2+4y﹣21=0
B.x2+y2﹣4y﹣21=0
C.x2+y2+4y﹣96=0
D.x2+y2﹣4y﹣96=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計(jì)表明,家庭的月理財(cái)投入(單位:千元)與月收入(單位:千元)之間具有線性相關(guān)關(guān)系.某銀行隨機(jī)抽取5個家庭,獲得第1,2,3,4,5)個家庭的月理財(cái)投入與月收入的數(shù)據(jù)資料,經(jīng)計(jì)算得,,

(1)求關(guān)于的回歸方程

(2)判斷之間是正相關(guān)還是負(fù)相關(guān);

(3)若某家庭月理財(cái)投入為5千元,預(yù)測該家庭的月收入.

附:回歸方程的斜率與截距的最小二乘估計(jì)公式分別為:

,其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=4,2an+1=an+1.
(1)求{an}的通項(xiàng)公式和a5;
(2)若要使a≤ ,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且滿足x>0時,f(x)+xf'(x)>0,f(2)=0,則不等式f(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是正方形的四棱錐ABCD,BDAC于點(diǎn)E,F(xiàn)PC中點(diǎn),GAC上一點(diǎn).

(1)求證:;

(2)確定點(diǎn)G在線段AC上的位置,使FG//平面PBD,并說明理由;

(3)當(dāng)二面角的大小為時,求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m6x﹣4x , m∈R.
(1)當(dāng)m= 時,求滿足f(x+1)>f(x)的實(shí)數(shù)x的范圍;
(2)若f(x)≤9x對任意的x∈R恒成立,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:2xay+4=0與直線l2平行,且l2過點(diǎn)(2,-2),并與坐標(biāo)軸圍成的三角形面積為,求a的值.

查看答案和解析>>

同步練習(xí)冊答案