【題目】對(duì)于一個(gè)具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點(diǎn)到另一點(diǎn)的距離是在南北方向上行進(jìn)的距離加上在東西方向上行進(jìn)的距離,這種距離即曼哈頓距離,也叫出租車(chē)距離”.對(duì)于平面直角坐標(biāo)系中的點(diǎn),兩點(diǎn)間的曼哈頓距離.

1)如圖,若為坐標(biāo)原點(diǎn),,兩點(diǎn)坐標(biāo)分別為,求,;

2)若點(diǎn)滿(mǎn)足,試在圖中畫(huà)出點(diǎn)的軌跡,并求該軌跡所圍成圖形的面積;

3)已知函數(shù),試在圖象上找一點(diǎn),使得最小,并求出此時(shí)點(diǎn)的坐標(biāo).

【答案】15,5,4 2)圖見(jiàn)解析,面積為50; 3

【解析】

1)由題中新定義即可求解

2)設(shè)點(diǎn)坐標(biāo)為,由新定義可得,即點(diǎn)的軌跡為正方形,從而可求得面積.

3)由新定義,利用函數(shù)的單調(diào)性即可求出最小值,進(jìn)而求出點(diǎn)的坐標(biāo).

解:(1)由題得,

2

設(shè)點(diǎn)坐標(biāo)為,因?yàn)辄c(diǎn)滿(mǎn)足,

點(diǎn)的軌跡為如圖所示正方形(說(shuō)明:畫(huà)出圖形即可,不用說(shuō)明理由)

該正方形所圍成圖形的面積.

3)設(shè)點(diǎn)坐標(biāo)為,則由題,因?yàn)?/span>,

設(shè),任取,且,

,且,

,上是減函數(shù),

當(dāng),即點(diǎn)的坐標(biāo)為時(shí),,即最小為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).

(1)求函數(shù)g(x)的定義域;

(2)f(x)是奇函數(shù)且在定義域上單調(diào)遞減,求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5 000元,一輛非事故車(chē)盈利10 000元.且各種投保類(lèi)型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:

①若該銷(xiāo)售商店內(nèi)有6輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選2輛車(chē),求這2輛車(chē)恰好有一輛為事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷的單調(diào)性,并說(shuō)明理由;

2)判斷的奇偶性,并用定義證明;

3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐,底面,,上一點(diǎn),且.

(1)求證:平面;

(2),,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開(kāi)展,組委會(huì)為了解各所學(xué)校學(xué)生的學(xué)情,欲從四地選取200人作樣本開(kāi)展調(diào)研.若來(lái)自荊州地區(qū)的考生有1000人,荊門(mén)地區(qū)的考生有2000人,襄陽(yáng)地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調(diào)研結(jié)果相對(duì)準(zhǔn)確,下列判斷正確的有( 。

①用分層抽樣的方法分別抽取荊州地區(qū)學(xué)生25人、荊門(mén)地區(qū)學(xué)生50人、襄陽(yáng)地區(qū)學(xué)生75人、宜昌地區(qū)學(xué)生50人;

②可采用簡(jiǎn)單隨機(jī)抽樣的方法從所有考生中選出200人開(kāi)展調(diào)研;

③宜昌地區(qū)學(xué)生小劉被選中的概率為;

④襄陽(yáng)地區(qū)學(xué)生小張被選中的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快餐代賣(mài)店代售多種類(lèi)型的快餐,深受廣大消費(fèi)者喜愛(ài).其中,種類(lèi)型的快餐每份進(jìn)價(jià)為元,并以每份元的價(jià)格銷(xiāo)售.如果當(dāng)天20:00之前賣(mài)不完,剩余的該種快餐每份以元的價(jià)格作特價(jià)處理,且全部售完.

(1)若該代賣(mài)店每天定制種類(lèi)型快餐,求種類(lèi)型快餐當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;

(2)該代賣(mài)店記錄了一個(gè)月天的種類(lèi)型快餐日需求量(每天20:00之前銷(xiāo)售數(shù)量)

日需求量

天數(shù)

(i)假設(shè)代賣(mài)店在這一個(gè)月內(nèi)每天定制種類(lèi)型快餐,求這一個(gè)月種類(lèi)型快餐的日利潤(rùn)(單位:元)的平均數(shù)(精確到);

(ii)若代賣(mài)店每天定制種類(lèi)型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類(lèi)型快餐當(dāng)天的利潤(rùn)不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),中美貿(mào)易摩擦不斷.特別是美國(guó)對(duì)我國(guó)華為的限制.盡管美國(guó)對(duì)華為極力封鎖,百般刁難,并不斷加大對(duì)各國(guó)的施壓,拉攏他們抵制華為5G,然而這并沒(méi)有讓華為卻步.華為在2018年不僅凈利潤(rùn)創(chuàng)下記錄,海外增長(zhǎng)同樣強(qiáng)勁.今年,我國(guó)華為某一企業(yè)為了進(jìn)一步增加市場(chǎng)競(jìng)爭(zhēng)力,計(jì)劃在2020年利用新技術(shù)生產(chǎn)某款新手機(jī).通過(guò)市場(chǎng)分析,生產(chǎn)此款手機(jī)全年需投入固定成本250萬(wàn),每生產(chǎn)(千部)手機(jī),需另投入成本萬(wàn)元,且 ,由市場(chǎng)調(diào)研知,每部手機(jī)售價(jià)0.7萬(wàn)元,且全年內(nèi)生產(chǎn)的手機(jī)當(dāng)年能全部銷(xiāo)售完.

)求出2020年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千部)的函數(shù)關(guān)系式,(利潤(rùn)=銷(xiāo)售額—成本);

2020年產(chǎn)量為多少(千部)時(shí),企業(yè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)fx)>0,對(duì)任意x,yR都有fx+y)=fx fy)成立,且當(dāng)x0時(shí),fx)>1

1)求f0)的值;

2)求證fx)在R上是增函數(shù);

3)若fk3xf3x9x2)<1對(duì)任意xR恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案