【題目】上海市松江區(qū)天馬山上的護(hù)珠塔因其傾斜度超過意大利的比薩斜塔而號稱世界第一斜塔.興趣小組同學(xué)實(shí)施如下方案來測量塔的傾斜度和塔高:如圖,記O點(diǎn)為塔基、P點(diǎn)為塔尖、點(diǎn)P在地面上的射影為點(diǎn)H.在塔身OP射影所在直線上選點(diǎn)A,使仰角∠HAP=45°,過O點(diǎn)與OA120°的地面上選B點(diǎn),使仰角∠HPB=45°(點(diǎn)A、BO都在同一水平面上),此時測得∠OAB=27°AB之間距離為33.6米.試求:

1)塔高(即線段PH的長,精確到0.1米);

2)塔身的傾斜度(即POPH的夾角,精確到0.1°).

【答案】1;(2

【解析】

1)根據(jù)仰角可得,在可利用來構(gòu)造關(guān)于的方程,進(jìn)而得到結(jié)果;

2)在中,利用正弦定理可構(gòu)造方程求得,從而可得,進(jìn)而求得結(jié)果.

1)設(shè)塔高,由題意知,

均為等腰直角三角形

中,,

即塔高約為

2)在中,

,

得:

即塔身的傾斜度約為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P是棱長為1的正方體ABCDA1B1C1D1的底面A1B1C1D1上一點(diǎn),則的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和滿足.

1)求數(shù)列的通項公式;

2)記是數(shù)列的前項和,若對任意的,不等式都成立,求實(shí)數(shù)的取值范圍;

3)記,是否存在互不相等的正整數(shù),,,使,成等差數(shù)列,且,,成等比數(shù)列?如果存在,求出所有符合條件的,;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年7月18日15時,超強(qiáng)臺風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:

經(jīng)濟(jì)損失

4000元以下

經(jīng)濟(jì)損失

4000元以上

合計

捐款超過500元

30

捐款低于500元

6

合計

(1)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(2)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,昆明加大了特色農(nóng)業(yè)建設(shè),其中花卉產(chǎn)業(yè)是重要組成部分.昆明斗南毗鄰滇池東岸,是著名的花都,有全國10支鮮花7支產(chǎn)自斗南之說,享有金斗南的美譽(yù)。對斗南花卉交易市場某個品種的玫瑰花日銷售情況進(jìn)行調(diào)研,得到這種玫瑰花的定價(單位:元/扎,20/扎)和銷售率(銷售率是銷售量與供應(yīng)量的比值)的統(tǒng)計數(shù)據(jù)如下:

10

20

30

40

50

60

0.9

0.65

0.45

0.3

0.2

0.175

1)設(shè),根據(jù)所給參考數(shù)據(jù)判斷,回歸模型哪個更合適,并根據(jù)你的判斷結(jié)果求回歸方程(、的結(jié)果保留一位小數(shù));

2)某家花卉公司每天向斗南花卉交易市場提供該品種玫瑰花1200扎,根據(jù)(1)中的回歸方程,估計定價(單位:元/扎)為多少時,這家公司該品種玫瑰花的日銷售額(單位:元)最大,并求的最大值。

參考數(shù)據(jù):的相關(guān)系數(shù)的相關(guān)系數(shù),,,,,,,,.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,,則

③若,,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn),點(diǎn),動圓軸相切于點(diǎn),過點(diǎn)的直線與圓相切于點(diǎn),過點(diǎn)的直線與圓相切于點(diǎn)均不同于點(diǎn)),且交于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.

(1)證明:為定值,并求的方程;

(2)設(shè)直線的另一個交點(diǎn)為,直線交于兩點(diǎn),當(dāng)三點(diǎn)共線時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足:對于任意正數(shù),都有,且,則稱函數(shù)為“L函數(shù)”.

1)試判斷函數(shù)是否是“L函數(shù)”;

2)若函數(shù)為“L函數(shù)”,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)L函數(shù),且,求證:對任意,都有

查看答案和解析>>

同步練習(xí)冊答案