【題目】某校高三年級有男生220人,學(xué)籍編號為1,2,…,220;女生380人,學(xué)籍編號為221,222,…,600.為了解學(xué)生學(xué)習(xí)的心理狀態(tài),按學(xué)籍編號采用系統(tǒng)抽樣的方法從這600名學(xué)生中抽取10人進(jìn)行問卷調(diào)查(第一組采用簡單隨機(jī)抽樣,抽到的號碼為10),再從這10名學(xué)生中隨機(jī)抽取3人進(jìn)行座談,則這3人中既有男生又有女生的概率是( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①已知函數(shù)的定義域為,則函數(shù)的定義域為;
②若集合中只有一個元素,則;
③函數(shù)在上是增函數(shù);
④方程的實根的個數(shù)是1.
所有正確命題的序號是______(請將所有正確命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,是正三角形,四邊形為直角梯形,點為中點,且,,,,.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左.右焦點分別為,短軸兩個端點為,且四邊形的邊長為 的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,分別是橢圓長軸的左,右端點,動點滿足,連結(jié),交橢圓于點.證明: 的定值;
(Ⅲ)在(Ⅱ)的條件下,試問軸上是否存在異于點,的定點,使得以為直徑的圓恒過直線,的交點,若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次高三年級模擬考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從A,B兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,作為下一步教學(xué)的參考依據(jù),計劃從900名考生的選做題成績中隨機(jī)抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機(jī)順序依次編號為001~900.
(1)若采用系統(tǒng)抽樣法抽樣,從編號為001~090的成績中用簡單隨機(jī)抽樣確定的成績編號為025,求樣本中所有成績編號之和;
(2)若采用分層抽樣,按照學(xué)生選擇A題目或B題目,將成績分為兩層.已知該校高三學(xué)生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績平均數(shù)為5,方差為2,B題目的成績平均數(shù)為5.5,方差為0.25.
(i)用樣本估計該校這900名考生選做題得分的平均數(shù)與方差;
(ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績的中位數(shù)和B題目成績的中位數(shù)都是5.5.從樣本中隨機(jī)選取兩個大于樣本平均值的數(shù)據(jù)做進(jìn)一步調(diào)查,求取到的兩個成績來自不同題目的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,曲線
過點
,且在點
處的切線方程為
.
(1)求
的值;
(2)證明:當(dāng)
時,
;
(3)若當(dāng)
時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點是曲線上的動點,點在的延長線上,且,點的軌跡為.
(1)求直線及曲線的極坐標(biāo)方程;
(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院為篩查某種疾病,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:①逐份檢驗,列需要檢驗次;②混合檢驗,將其(且)份血液樣本分別取樣混合在一起檢驗.若檢驗結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗一次就夠了,如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗,此時這份血液的檢驗次數(shù)總共為次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是獨立的,且每份樣本是陽性結(jié)果的概率為.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現(xiàn)取其中(且)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數(shù)為,采用混合檢驗方式,樣本需要檢驗的總次數(shù)為.
(i)運用概率統(tǒng)計的知識,若,試求關(guān)于的函數(shù)關(guān)系式;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數(shù)的期望值比逐份檢驗的總次數(shù)期望值更少,求的最大值.
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,證明: (其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com