【題目】若函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,則實數(shù)a的取值范圍是

【答案】(﹣∞,2ln2﹣2)
【解析】解:∵函數(shù)f(x)=x2﹣ex﹣ax,
∴f′(x)=2x﹣ex﹣a,
∵函數(shù)f(x)=x2﹣ex﹣ax在R上存在單調(diào)遞增區(qū)間,
∴f′(x)=2x﹣ex﹣a>0,
即a<2x﹣ex有解,
令g′(x)=2﹣ex
g′(x)=2﹣ex=0,x=ln2,
g′(x)=2﹣ex>0,x<ln2,
g′(x)=2﹣ex<0,x>ln2
∴當x=ln2時,g(x)max=2ln2﹣2,
∴a<2ln2﹣2即可.
所以答案是:(﹣∞,2ln2﹣2)
【考點精析】認真審題,首先需要了解利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,ADDCCB1∠BCD120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF1

1)求證:AD⊥平面BFED;

2)已知點P在線段EF上,2.求三棱錐EAPD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知曲線C1y=(x>0)及曲線C2y= (x>0).C1上的點Pn的橫坐標為an,過C1上的點Pn(n∈N)作直線平行于x軸,交曲線C2于點Qn,再過點Qn作直線平行于y軸,交曲線C1于點Pn+1.

試求an+1與an之間的關系,并證明a2n-1<<a2n(n∈N).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (其中θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρcosθ﹣ρsinθ+1=0.
(1)分別寫出曲線C1與曲線C2的普通方程;
(2)若曲線C1與曲線C2交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)在區(qū)間上的最大、最小值;

2)求證:在區(qū)間上,函數(shù)的圖象在函數(shù)的圖象的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求函數(shù)f(x)=3﹣2asinx﹣cos2x,x∈[﹣ , ]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個月.經(jīng)氣象局統(tǒng)計,北京市從1月1日至1月30日的30天里有26天出現(xiàn)霧霾天氣,《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術規(guī)定(試行)》將空氣質(zhì)量指數(shù)分為六級,其中,中度污染(四級)指數(shù)為151~200;重度污染(五級)指數(shù)為201~300;嚴重污染(六級)指數(shù)大于300.下面表1是某觀測點記錄的4天里AQI指數(shù)M與當天的空氣水平可見度y(千米)的情況,表2是某氣象觀測點記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)的統(tǒng)計結(jié)果.

表1 

AQI指數(shù)M

900

700

300

100

空氣可見度y/千米

0.5

3.5

6.5

9.5

表2 

AQI指數(shù)

[0,200]

(200,400]

(400,600]

(600,800]

(800,1000]

頻數(shù)

3

6

12

6

3

(1)設變量x=,根據(jù)表1的數(shù)據(jù),求出y關于x的線性回歸方程;

(2)根據(jù)表2估計這30天AQI指數(shù)的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= 恰有2個零點,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知Q2=稱為x,y的二維平方平均數(shù),A2=稱為x,y的二維算術平均數(shù),G2=稱為x,y的二維幾何平均數(shù),H2=稱為x,y的二維調(diào)和平均數(shù),其中x,y均為正數(shù).

(1)試判斷G2H2的大小,并證明你的猜想.

(2)令M=A2﹣G2,N=G2﹣H2,試判斷MN的大小,并證明你的猜想.

(3)令M=A2﹣G2,N=G2﹣H2,P=Q2﹣A2,試判斷M、N、P三者之間的大小關系,并證明你的猜想.

查看答案和解析>>

同步練習冊答案