在直角坐標(biāo)平面上,O為原點(diǎn),N為動(dòng)點(diǎn),||=6,.過(guò)點(diǎn)M作MM1⊥y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,,記點(diǎn)T的軌跡為曲線(xiàn)C.

(Ⅰ)求曲線(xiàn)C的方程;

(Ⅱ)已知直線(xiàn)L與雙曲線(xiàn)C1:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第一象限),線(xiàn)段OP交軌跡C于A,若=3,SΔPAQ=-26tan∠PAQ,求直線(xiàn)L的方程.

答案:
解析:

  解:(Ⅰ)設(shè)T(x,y),點(diǎn)N(x1,y1),則N1(x1,0).又=(x1,y1),

  ∴M1(0,y1),=(x1,0),=(0,y1).

  于是=(x1,y1),即(x,y)=(x1,y1).

  代入||=6,得5x2+y2=36.

  所求曲線(xiàn)C的軌跡方程為5x2+y2=36.

  ()

  設(shè)A(m,n),由及P在第一象限得

  解得

  即

  設(shè)

  由

  ,

  ,即

  聯(lián)立①,②,解得

  因點(diǎn)Q在雙曲線(xiàn)C1的右支,故點(diǎn)Q的坐標(biāo)為(3,-3)

  由P(6,12),Q(3,-3)得直線(xiàn)l的方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),|
OM
|=
5
,
ON
=
2
5
5
OM
.過(guò)點(diǎn)M作MM1⊥y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
.記點(diǎn)T的軌跡為曲線(xiàn)C,點(diǎn)A(5,0)、B(1,0),過(guò)點(diǎn)A作直線(xiàn)l交曲線(xiàn)C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)是否存在直線(xiàn)l,使得|BP|=|BQ|,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),.過(guò)點(diǎn)M作MM1軸于M1,過(guò)N作NN1軸于點(diǎn)N1,.記點(diǎn)T的軌跡為曲線(xiàn)C,點(diǎn)A(5,0)、B(1,0),過(guò)點(diǎn)A作直線(xiàn)交曲線(xiàn)C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).

(Ⅰ)求曲線(xiàn)C的方程;

(Ⅱ)證明不存在直線(xiàn),使得;

(Ⅲ)過(guò)點(diǎn)P作軸的平行線(xiàn)與曲線(xiàn)C的另一交點(diǎn)為S,若,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(4)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),.過(guò)點(diǎn)M作MM1⊥y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,.記點(diǎn)T的軌跡為曲線(xiàn)C,點(diǎn)A(5,0)、B(1,0),過(guò)點(diǎn)A作直線(xiàn)l交曲線(xiàn)C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)是否存在直線(xiàn)l,使得|BP|=|BQ|,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測(cè)試卷14(文科)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),.過(guò)點(diǎn)M作MM1⊥y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,.記點(diǎn)T的軌跡為曲線(xiàn)C,點(diǎn)A(5,0)、B(1,0),過(guò)點(diǎn)A作直線(xiàn)l交曲線(xiàn)C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)是否存在直線(xiàn)l,使得|BP|=|BQ|,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考數(shù)學(xué)沖刺預(yù)測(cè)試卷14(理科)(解析版) 題型:解答題

在直角坐標(biāo)平面上,O為原點(diǎn),M為動(dòng)點(diǎn),.過(guò)點(diǎn)M作MM1⊥y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,.記點(diǎn)T的軌跡為曲線(xiàn)C,點(diǎn)A(5,0)、B(1,0),過(guò)點(diǎn)A作直線(xiàn)l交曲線(xiàn)C于兩個(gè)不同的點(diǎn)P、Q(點(diǎn)Q在A與P之間).
(Ⅰ)求曲線(xiàn)C的方程;
(Ⅱ)是否存在直線(xiàn)l,使得|BP|=|BQ|,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案