已知橢圓數(shù)學公式的右焦點與拋物線C2:y2=4x的焦點F重合,橢圓C1與拋物線C2在第一象限的交點為P,數(shù)學公式
(1)求橢圓C1的方程;
(2)過點A(-1,0)的直線與橢圓C1相交于M、N兩點,求使數(shù)學公式成立的動點R的軌跡方程.

(1)解:拋物線C2:y2=4x的焦點F的坐標為(1,0),準線為x=-1,
設點P的坐標為(x0,y0),依據(jù)拋物線的定義,由,得1+x0=,解得
∵點P在拋物線C2上,且在第一象限,∴,解得
∴點P的坐標為
∵點P在橢圓上,∴
又c=1,且a2=b2+c2=b2+1,解得a2=4,b2=3.
∴橢圓C1的方程為
(2)解:設點M(x1,y1)、N(x2,y2)、R(x,y),


,
∴x1+x2-2=x-1,y1+y2=y.①
∵M、N在橢圓C1上,∴
上面兩式相減得.②
把①式代入②式得
當x1≠x2時,得.③
設FR的中點為Q,則Q的坐標為
∵M、N、Q、A四點共線,∴kMN=kAQ,即.④
把④式代入③式,得,化簡得4y2+3(x2+4x+3)=0.
當x1=x2時,可得點R的坐標為(-3,0),
經(jīng)檢驗,點R(-3,0)在曲線4y2+3(x2+4x+3)=0上.
∴動點R的軌跡方程為4y2+3(x2+4x+3)=0.
分析:(1)拋物線y2=4x的焦點F的坐標為(1,0),準線為x=-1,設點P的坐標為(x0,y0),依據(jù)拋物線的定義,由,可求x0.由點P在拋物線C2上,且在第一象限可求點P的坐標,再由點P在橢圓上及c=1,a2=b2+c2=b2+1,可求a,b,從而可求橢圓的方程
(2)設點M(x1,y1)、N(x2,y2)、R(x,y),則由,可得x1+x2-2=x-1,y1+y2=y.利用設而不求的方法可得,設FR的中點為Q,則Q的坐標為.由M、N、Q、A四點共線可得整理可得
點評:圓錐曲線的性質(zhì)與圓錐曲線的定義相結(jié)合,在解題時要注意靈活應用這樣可以簡化運算在直線與橢圓的位置關系中涉及到直線的斜率、線段的中點結(jié)合在一起的問題,“設而不求”得做法可以簡化解題的基本運算,這是解決此類問題的重要方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準線與軸交于,橢圓與拋物線的一個交點為.

(1)當時,求橢圓的方程;

(2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準線與軸交于,橢圓與拋物線的一個交點為.

(1)當時,求橢圓的方程;

(2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市浦東新區(qū)高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市浦東新區(qū)高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案