如圖,在梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是BC上的一個(gè)動(dòng)點(diǎn),當(dāng)
PD
PA
取得最小值時(shí),
CP
PD
的值為
 
考點(diǎn):余弦定理的應(yīng)用,平面向量數(shù)量積的運(yùn)算
專題:解三角形
分析:△PDA中,由余弦定理求得
PD
PA
=
AP2+DP2-1
2
2AP•DP-1
2
,當(dāng)且僅當(dāng)AP=DP,取等號(hào).此時(shí),求得CP=
3
2
,DP=
37
2
,從而可得
CP
PD
的值.
解答: 解:∵
PD
PA
=PD•PA cos∠APD,△PDA中,由余弦定理可得
1=AP2+DP2-2AP•DPcos∠APD=AP2+DP2-2
PD
PA
,
PD
PA
=
AP2+DP2-1
2
2AP•DP-1
2
,當(dāng)且僅當(dāng)AP=DP,取等號(hào).
即P是AD的中垂線和BC的交點(diǎn)時(shí),
PD
PA
最。
此時(shí),CP=
3
2
,DP=
32+(
1
2
)
2
=
37
2
,∴
CP
PD
=
3
2
37
2
=
3
37
,
故答案為:
3
37
點(diǎn)評(píng):本題主要考查余弦定理、兩個(gè)向量的數(shù)量積公式、基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商店將每個(gè)進(jìn)價(jià)為10元的商品,按每個(gè)18元銷售時(shí),每天可賣出60個(gè),經(jīng)調(diào)查,若將這種商品的售價(jià)(在每個(gè)18元的基礎(chǔ)上)每提高1元,則日銷售量就減少5個(gè);若將這種商品的售價(jià)(在每個(gè)18元的基礎(chǔ)上)每降低1元,則日銷售量就增加10個(gè),為獲得每日最大利潤(rùn),此商品售價(jià)應(yīng)定為每個(gè)多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P是拋物線y2=x上的動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(3,0),則|PQ|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=cos61°•cos127°+cos29°•cos37°,b=
2tan13°
1+tan213°
,c=
1-cos50°
2
,則a,b,c的大小關(guān)系(由小到大排列)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(-x)=f(x),且f(x)有三個(gè)零點(diǎn)x1,x2,x3,則x1+x2+x3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

冪函數(shù)f(x)=x
1
4
的定義域?yàn)?div id="8yfxnfv" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=2sin(ωx+Φ)+m,對(duì)任意實(shí)數(shù)t都有f(t+
π
4
)=f(-t)
,且f(
π
8
)=-1
,則實(shí)數(shù)m的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:x<2,命題q:x≤1,若p∧(¬q)為真,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)范圍內(nèi)不等式2x<x2+1的解集為(  )
A、∅
B、R
C、{x|x≠1}
D、{x|x>1,或x<-1}

查看答案和解析>>

同步練習(xí)冊(cè)答案