“φ=0”是“函數(shù)f(x)=cos(x+φ)為奇函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:利用函數(shù)的奇偶性即可判斷出.
解答: 解:當(dāng)φ=0時(shí),函數(shù)f(x)=cos(x+φ)=cosx為偶函數(shù);
由函數(shù)f(x)=cos(x+φ)為奇函數(shù),∴cos(-x+φ)=-cos(x+φ),
解得φ=kπ+
π
2
(k∈Z),
因此“φ=0”是“函數(shù)f(x)=cos(x+φ)為奇函數(shù)”的既不充分也不必要條件.
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log
1
2
(x+1)   (x≥1)
1       (x<1)
,則不等式f(3-x2)<f(2x)的解集為( 。
A、(-3,1)
B、[-
2
,1)
C、[
1
2
,1)
D、(
1
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是奇函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( 。
A、y=x3
B、y=ex
C、y=x-1
D、y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的兩邊長(zhǎng)分別為4,5,它們夾角的余弦值是 
1
2
,則第三邊長(zhǎng)是(  )
A、
20
B、
21
C、
22
D、
61

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,3)和直線l:2x+3y-6=0,點(diǎn)B在l上運(yùn)動(dòng),點(diǎn)P是有向線段AB上的分點(diǎn),且
AP
=
1
2
PB
,則點(diǎn)P的軌跡方程是(  )
A、6x-9y-28=0
B、6x-9y+28=0
C、6x+9y-28=0
D、6x+9y+28=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

i為虛數(shù)單位,若復(fù)數(shù)
z
1+2i
=
5
i
5
,則|z|=( 。
A、1
B、2
C、
5
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5,7},則A∩(∁UB)等于(  )
A、{2,4,6}
B、{1,3,5}
C、{2,4,5}
D、{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+
2a2
x
+x(a≠0)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-2y=0垂直,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)單調(diào)性;
(3)當(dāng)a∈(-∞,0)時(shí),記函數(shù)f(x)的最小值為g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2sinx,cosx),
n
=(
3
cosx,2cosx),定義函數(shù)f(x)=
.
m
n
-1.
(1)求函數(shù)f(x)的最小正周期;
(2)確定函數(shù)f(x)的單調(diào)區(qū)間、對(duì)稱軸與對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案