如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
(1)見解析(2)
【解析】(1)連接AC1交A1C于點F,則F為AC1的中點.
又D是AB的中點,連接DF,則BC1∥DF.
因為DF?平面A1CD,BC1?平面A1CD,所以BC1∥平面A1CD.
(2)由AC=CB=AB,得AC⊥BC.
以C為坐標原點,的方向為x軸正方向,的方向為y軸正方向,的方向為z軸正方向,建立如圖所示的空間直角坐標系C -xyz.
設CA=2,則D(1,1,0),E(0,2,1),A1(2,0,2),
=(1,1,0),=(0,2,1),=(2,0,2).
設n=(x1,y1,z1)是平面A1CD的法向量,
則即可取n=(1,-1,-1).
同理,設m=(x2,y2,z2)是平面A1CE的法向量,
則即可取m=(2,1,-2).
從而cos〈n,m〉==,故sin〈n,m〉=.
即二面角D-A1C-E的正弦值為.
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練選修4-1練習卷(解析版) 題型:填空題
如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3 cm,4 cm,以AC為直徑的圓與AB交于點D,則=________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-6-3練習卷(解析版) 題型:選擇題
已知雙曲線C1:=1(a>0,b>0)的離心率為2.若拋物線C2:x2=2py(p>0)的焦點到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為 ( ).
A.x2=y B.x2=y C.x2=8y D.x2=16y
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-6-1練習卷(解析版) 題型:解答題
在平面直角坐標系xOy中,曲線y=x2-6x+1與坐標軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-6-1練習卷(解析版) 題型:選擇題
已知圓的方程為x2+y2-6x-8y=0,設該圓中過點(3,5)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是( ).
A.10 B.20
C.30 D.40
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-5-3練習卷(解析版) 題型:選擇題
過正方形ABCD的頂點A,引PA⊥平面ABCD.若PA=BA,則平面ABP和平面CDP所成的二面角的大小是( ).
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-5-2練習卷(解析版) 題型:填空題
如圖,正方體ABCD-A1B1C1D1的棱長為1,P為BC的中點,Q為線段CC1上的動點,過點A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是________(寫出所有正確命題的編號).
①當0<CQ<時,S為四邊形;
②當CQ=時,S為等腰梯形;
③當<CQ<1時,S為六邊形;
④當CQ=1時,S的面積為.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-5-1練習卷(解析版) 題型:選擇題
一個四棱錐的側棱長都相等,底面是正方形,其正(主)視圖如圖所示,則該四棱錐側面積和體積分別是( ).
A.4,8 B.4, C.4(+1), D.8,8
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪專題復習知能提升演練1-3-1練習卷(解析版) 題型:選擇題
已知ω>0,函數f(x)=sin 在上單調遞減,則ω的取值范圍是( ).
A. B. C. D.(0,2]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com