【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時,恒成立,求實數(shù)k的取值范圍.
【答案】(1),;(2)單調(diào)遞減,見解析;(3)
【解析】
(1)根據(jù)得到,根據(jù)計算得到,得到答案.
(2)化簡得到,,計算,得到是減函數(shù).
(3)化簡得到,參數(shù)分離,求函數(shù)的最小值得到答案.
(1)因為在定義域R上是奇函數(shù).所以,
即,所以.又由,即,
所以,檢驗知,當(dāng),時,原函數(shù)是奇函數(shù).
(2)在上單調(diào)遞減.證明:由(1)知,
任取,設(shè),則,
因為函數(shù)在上是增函數(shù),且,所以,又,
所以,即,
所以函數(shù)在R上單調(diào)遞減.
(3)因為是奇函數(shù),從而不等式等價于,
因為在上是減函數(shù),由上式推得,
即對一切有恒成立,設(shè),
令,
則有,,所以,
所以,即的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時, .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線與正方形: 的邊界相切.
(1)求的值;
(2)設(shè)直線交曲線于,交于,是否存在這樣的曲線,使得, , 成等差數(shù)列?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長為4,寬為1的長方形折疊成長方體ABCD-A1B1C1D1的四個側(cè)面,記底面上一邊,連接A1B,A1C,A1D.
(1)求長方體ABCD-A1B1C1D1體積的最大值 ;
(2)當(dāng)長方體ABCD-A1B1C1D1的體積最大時,求二面角B-A1C-D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中中,曲線的參數(shù)方程為為參數(shù), ). 以坐標原點為極點, 軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為.
(1)設(shè)是曲線上的一個動點,當(dāng)時,求點到直線的距離的最大值;
(2)若曲線上所有的點均在直線的右下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:
(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;
(2)輪胎的寬度在內(nèi),則稱這個輪胎是標準輪胎.
(i)若從甲乙提供的個輪胎中隨機選取個,求所選的輪胎是標準輪胎的概率;
(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據(jù)兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸為極軸建立極坐標系,曲線的極坐標為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線和曲線有三個公共點,求以這三個公共點為頂點的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,已知是邊長為2的正方形, 為正三角形, 分別為的中點, 且, .
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com