【題目】為推導(dǎo)球的體積公式,劉徽制造了一個(gè)牟合方蓋(在一個(gè)正方體內(nèi)作兩個(gè)互相垂直的內(nèi)切圓柱,這兩個(gè)圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計(jì)算方法,其核心過程被后人稱為祖暅原理:緣冪勢既同,則積不容異.意思是,夾在兩個(gè)平行平面間的兩個(gè)幾何體被平行于這兩個(gè)平行平面的任意平面所截,如果截面的面積總相等,那么這兩個(gè)幾何體的體積也相等.現(xiàn)在截取牟合方蓋的八分之一,它的外切正方體的棱長為1,如圖所示,根據(jù)以上信息,則該牟合方蓋的體積為( )

A. B. C. D.

【答案】B

【解析】分析:在高度處的截面,用平行與正方體上下底面的平面去截,記截得兩圓柱體公共部分所得面積為,截得正方體所得面積為,解得椎體所得面積為,

,求出,再由定積分求出錐體體積,由正方體的體積減去錐體體積即可.

詳解:在高度處的截面,用平行與正方體上下底面的平面去截,

記截得兩圓柱體公共部分所得面積為,截得正方體所得面積為,

可得,,

,可得,則

所以該牟合方蓋的體積為,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,中點(diǎn).

(1)證明:平面

(2)若平面,是邊長為2的正三角形,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會的發(fā)展,終身學(xué)習(xí)成為必要,工人知識要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的;

(2)求類工人生產(chǎn)能力的中位數(shù),并估計(jì)類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表

短期培訓(xùn)

長期培訓(xùn)

合計(jì)

能力優(yōu)秀

能力不優(yōu)秀

合計(jì)

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC,a=7,b=8,cosB= –

A

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是棱長為的正方體.

1)求證:平面平面;

2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中,側(cè)面底面,,則三棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點(diǎn),求證:

(1)PQ平面DCC1D1

(2)EF平面BB1D1D.

查看答案和解析>>

同步練習(xí)冊答案