【題目】已知函數(shù),,其中,
(1)當(dāng)時(shí),求使得等式成立的的取值范圍;
(2)當(dāng)時(shí),求使得等式成立的的取值范圍;
(3)求的區(qū)間上的最大值.
【答案】(1);(2);(3)
【解析】
(1)由得,再將代入不等式得:,對(duì)進(jìn)行討論去絕對(duì)值,從而得到的取值范圍;
(2)問題等價(jià)于解不等式,其中,對(duì)分成和兩種情況去掉絕對(duì)值,再解含參不等式;
(3)由題意得為一個(gè)分段函數(shù),利用(2)的結(jié)論得分別求出每一段函數(shù)的最大值,再進(jìn)行比較,最大的即為函數(shù)的最大值.
(1)由得,
因?yàn)?/span>,所以上述不等式等價(jià)于①,
當(dāng)時(shí),①,解得:,所以;
當(dāng)時(shí),①,方程無解,所以;
綜上所述.
(2)因?yàn)?/span>,所以
由,當(dāng)時(shí),
顯然成立,
所以不成立.
當(dāng)時(shí),,
方程的兩根為,且,
所以的解為,與取交集還是,
綜上所述:使成立的的取值范圍是.
(3)由(2)得,
當(dāng)時(shí),,此時(shí),,
所以.
當(dāng)時(shí),,
因?yàn)?/span>,,所以的最大值為中較大者,
當(dāng)時(shí),即,;
當(dāng)時(shí),即,;
當(dāng)時(shí),即,;
所以
綜上所述:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市計(jì)劃在一片空地上建一個(gè)集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個(gè)購物廣場(chǎng)的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場(chǎng)、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.
(1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);
(2)如果,并且,試分別求出、、、的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列和的項(xiàng)數(shù)均為,則將兩個(gè)數(shù)列的偏差距離定義為,其中.
(1)求數(shù)列1,2,7,8和數(shù)列2,3,5,6的偏差距離;
(2)設(shè)為滿足遞推關(guān)系的所有數(shù)列的集合,和為中的兩個(gè)元素,且項(xiàng)數(shù)均為,若,,和的偏差距離小于2020,求最大值;
(3)記是所有7項(xiàng)數(shù)列或的集合,,且中任何兩個(gè)元素的偏差距離大于或等于3,證明:中的元素個(gè)數(shù)小于或等于16.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前n項(xiàng)和為,記, ,…, 中奇數(shù)的個(gè)數(shù)為.
(Ⅰ)若= n,請(qǐng)寫出數(shù)列的前5項(xiàng);
(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;
(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是以d為公差的等差數(shù)列,{bn}數(shù)列是以q為公比的等比數(shù)列.
(1)若數(shù)列{bn}的前n項(xiàng)和為Sn,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整數(shù)q的值;
(2)在(1)的條件下,試問數(shù)列中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)p(p∈N,p≥2)項(xiàng)的和?請(qǐng)說明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s﹣r)是(t﹣r)的約數(shù)),求證:數(shù)列{bn}中每一項(xiàng)都是數(shù)列{an}中的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線,對(duì)坐標(biāo)平面上任意一點(diǎn),定義,若兩點(diǎn),,滿足,稱點(diǎn),在曲線同側(cè);,稱點(diǎn),在曲線兩側(cè).
(1)直線過原點(diǎn),線段上所有點(diǎn)都在直線同側(cè),其中,,求直線的傾斜角的取值范圍;
(2)已知曲線,為坐標(biāo)原點(diǎn),求點(diǎn)集的面積;
(3)記到點(diǎn)與到軸距離和為的點(diǎn)的軌跡為曲線,曲線,若曲線上總存在兩點(diǎn),在曲線兩側(cè),求曲線的方程與實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列各項(xiàng)不為0,前項(xiàng)和為.
(1)若,,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,已知,分別求和的表達(dá)式;
(3)證明:是等差數(shù)列的充要條件是:對(duì)任意,都有:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com