【題目】函數(shù)f(x)的定義域?yàn)镽,f(﹣2)=2,對(duì)任意x∈R,f′(x)>2,則f(x)>2x+6的解集為(
A.(﹣2,2)
B.(﹣∞,﹣2)
C.(﹣2,+∞)
D.(﹣∞,+∞)

【答案】C
【解析】解:設(shè)F(x)=f(x)﹣(2x+6),
則F(﹣2)=f(﹣2)﹣(﹣4+6)=2﹣2=0,
又對(duì)任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,
即F(x)在R上單調(diào)遞增,
則F(x)>0的解集為(﹣2,+∞),
即f(x)>2x+6的解集為(﹣2,+∞).
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)M(m,n)在曲線 上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量 方向平移 個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過(guò)軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過(guò)一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)g(x)的圖象關(guān)于直線y=x對(duì)稱,令h(x)=g(1﹣|x|),則關(guān)于h(x)有下列命題:
①h(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號(hào)為:②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),關(guān)于的不等式的解集為,其中

(1)求的值;

(2)令,若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍,并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌茶壺的原售價(jià)為80元/個(gè),今有甲、乙兩家茶具店銷售這種茶壺,甲店用如下方法促銷:如果只購(gòu)買一個(gè)茶壺,其價(jià)格為78元/個(gè);如果一次購(gòu)買兩個(gè)茶壺,其價(jià)格為76元/個(gè);…,一次購(gòu)買的茶壺?cái)?shù)每增加一個(gè),那么茶壺的價(jià)格減少2元/個(gè),但茶壺的售價(jià)不得低于44元/個(gè);乙店一律按原價(jià)的75%銷售.現(xiàn)某茶社要購(gòu)買這種茶壺x個(gè),如果全部在甲店購(gòu)買,則所需金額為y1元;如果全部在乙店購(gòu)買,則所需金額為y2元.
(1)分別求出y1、y2與x之間的函數(shù)關(guān)系式;
(2)該茶社去哪家茶具店購(gòu)買茶壺花費(fèi)較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子裝有六張卡片,上面分別寫(xiě)著如下六個(gè)定義域?yàn)?/span>的函數(shù):

(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;

(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),關(guān)于的不等式的解集為,其中

(1)求的值;

(2)令,若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍,并求出極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=kax(k為常數(shù),a>0且a≠1)的圖象過(guò)點(diǎn)A(0,1)和點(diǎn)B(2,16).
(1)求函數(shù)的解析式;
(2)g(x)=b+ 是奇函數(shù),求常數(shù)b的值;
(3)對(duì)任意的x1 , x2∈R且x1≠x2 , 試比較 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:
1﹣ =
1﹣ + = +
1﹣ + + = + +

據(jù)此規(guī)律,第n個(gè)等式可為

查看答案和解析>>

同步練習(xí)冊(cè)答案