下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是
A.B.C.D.
A  

試題分析:奇函數(shù)有A., B. , C. ,但其中是減函數(shù)的只有,故選A。
點(diǎn)評(píng):簡單題,結(jié)合圖象,根據(jù)對(duì)函數(shù)性質(zhì)的認(rèn)識(shí),做出選擇。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的函數(shù)滿足.若當(dāng)時(shí)。,則當(dāng)時(shí),=________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)有兩個(gè)零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖像關(guān)于原點(diǎn)對(duì)稱.
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

集合M={f(x)|存在實(shí)數(shù)t使得函數(shù)f(x)滿足f(t+1)=f(t)+f(1)},則下列函數(shù)(a、b、c、k都是常數(shù)):
① y=kx+b(k≠0,b≠0);② y=ax2+bx+c(a≠0);
③ y=ax(0<a<1);④ y=(k≠0);⑤ y=sinx.
其中屬于集合M的函數(shù)是________.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在上的偶函數(shù),對(duì)任意實(shí)數(shù)都有,當(dāng)時(shí),,若在區(qū)間內(nèi),函數(shù)與函數(shù)的圖象恰有4個(gè)交點(diǎn),則實(shí)數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調(diào)遞減; q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,若對(duì)任意,恒成立,則a的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),有(其中為自然對(duì)數(shù)的底,).
(1)求函數(shù)的解析式;
(2)設(shè),求證:當(dāng)時(shí),;
(3)試問:是否存在實(shí)數(shù),使得當(dāng)時(shí),的最小值是3?如果存在,求出實(shí)數(shù)的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

利民商店經(jīng)銷某種洗衣粉,年銷售量為6000包,每包進(jìn)價(jià)2.80元,銷售價(jià)3.40元,全年分若干次進(jìn)貨,每次進(jìn)貨x包,已知每次進(jìn)貨運(yùn)輸勞務(wù)費(fèi)62.50元,全年保管費(fèi)為1.5x元。
(1)把該商店經(jīng)銷洗衣粉一年的利潤y(元)表示為每次進(jìn)貨量x(包)的函數(shù),并指出函數(shù)的定義域;
(2)為了使利潤最大,每次應(yīng)該進(jìn)貨多少包?

查看答案和解析>>

同步練習(xí)冊(cè)答案