【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD= ,直線PC與平面ABCD所成角的正切為 .
(1)設(shè)E為直線PC上任意一點,求證:AE⊥BD;
(2)求二面角B﹣PC﹣A的正弦值.
【答案】
(1)解:設(shè)O為線段AC的中點,由AB=BC知BO⊥AC,由AD=CD知DO⊥AC,從而B,O,D三點共線,即O為AC與DB的交點
又PA⊥平面ABCD,所以PA⊥BD
又AC∩PA=A,所以DB⊥平面PAC
因為E為直線PC上任意一點,所以AE平面PAC,所以AE⊥BD
(2)解:以 所在方向為x軸, 所在方向為y軸,過O作AP的平行線為z軸,建立空間直角坐標系
由題意,AC=2 ,OB=1,OD=2
又PA⊥平面ABCD,故直線PC與平面ABCD所成角即為∠PCA,∴tan∠PCA
所以PA= ,所以B(﹣1,0,0),C(0,﹣ ,0),P(0, , )
, ∴
設(shè)平面BPC的法向量 ,由 ,有
解得 …(10分)
由(1),取平面PCA的法向量 .
所以cos< >=
所以二面角B﹣PC﹣A的正弦值為
【解析】(1)設(shè)O為線段AC的中點,由AB=BC知BO⊥AC,由AD=CD知DO⊥AC,從而B,O,D三點共線,即O為AC與DB的交點,可得DB⊥平面PAC即可得AE⊥BD;(2)以 所在方向為x軸, 所在方向為y軸,過O作AP的平行線為z軸,建立空間直角坐標系由題意,AC=2 ,OB=1,OD=2,又PA⊥平面ABCD,故直線PC與平面ABCD所成角即為∠PCA,由tan∠PCA 求得PA,利用向量求解
【考點精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|y= },B={y|y=( )x},則A∩RB=( )
A.{x|0<x<1}
B.{x|x≤1}
C.{x|x≥1}
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=﹣2101 , 且當2≤n≤100時,an+2a102﹣n=3×2n恒成立,則數(shù)列{an}的前100項和S100= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
存在每個面都是直角三角形的四面體;
若三棱錐的三條側(cè)棱兩兩垂直,則其三個側(cè)面也兩兩垂直;
棱臺的側(cè)棱延長后交于一點;
用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;
其中正確命題的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知等差數(shù)列{an}的前n項和為Sn,且a3=5,S15="225."
(1)求數(shù)列{an}的通項an;
(2)設(shè)bn=+2n,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數(shù),如表:
氣溫 | 0 | 4 | 12 | 19 | 27 |
熱奶茶銷售杯數(shù) | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程(精確到0.1),若某天的氣溫為,預(yù)測這天熱奶茶的銷售杯數(shù);
(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率.
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校研究性學習小組從汽車市場上隨機抽取20輛純電動汽車,調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值及續(xù)駛里程在的車輛數(shù);
(2)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com