簡單的分式不等式的解法
(1)
2x+1
x-3
<0
(2)
2x+1
3-x
≤0
(3)
2x+1
3-x
≥1.
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:把要解的不等式進(jìn)行等價(jià)轉(zhuǎn)化為與之等價(jià)的一元二次不等式,從而求得它的解集.
解答: 解:(1)
2x+1
x-3
<0 等價(jià)于(2x+1)(x-3)<0,求得不等式的解集為{x|-
1
2
<x<3}.
(2)
2x+1
3-x
≤0等價(jià)于
2x+1
x-3
≥0,等價(jià)于
(2x+1)(x-3)≥0
x-3≠0
,求得不等式的解集為{x|x≤-
1
2
,或x>3}.

(3)
2x+1
3-x
≥1等價(jià)于
3x-2
x-3
≤0,等價(jià)于
(3x-2)(x-3)≤0
x-3≠0
,求得不等式的解集為{x|
2
3
≤x<3}.
點(diǎn)評:本題主要考查分式不等式的解法,一元二次不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在x∈R,使x2+ax-4a<0,為假命題”是命題“-16≤a≤0”的( 。
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC,內(nèi)角A,B,C的對邊分別為a,b,c,向量x=(2sin
A
2
,-
3
),y=(2cos2
A
4
-1,cosA),且x⊥y.
(1)求角A的大;
(2)若a=
7
且△ABC的面積為
3
3
2
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4,5這6個(gè)數(shù)字中取出不同的4個(gè)數(shù)字組成一個(gè)四位數(shù),求
(1)有多少個(gè)不同的四位偶數(shù);
(2)有多少個(gè)各數(shù)位上的數(shù)碼之和為奇數(shù)的四位數(shù);
(3)所有這些四位數(shù)的個(gè)位數(shù)字的和是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項(xiàng)和為Sn,且an+Sn=-2n-1.
(Ⅰ)證明:數(shù)列{an+2}是等比數(shù)列;
(Ⅱ)若{bn}滿足bn+1=bn+nan,b1=1,求bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:①f(1+x)=f(1-x);②在[1,+∞]上遞增;③x1>0,x2<0且x1+x2>2,則f(x1)與f(x2)的大小關(guān)系為( 。
A、f(x1)<f(x2
B、f(x1)=f(x2
C、f(x1)>f(x2
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
x
-
1
x
)7
展開式中,不含x2的項(xiàng)的系數(shù)和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
π
6
)
+sin2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若AB=1,sinB=
1
3
,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)cos(2x+
π
6
)的最小正周期為
 

查看答案和解析>>

同步練習(xí)冊答案