【題目】已知直線平面,直線平面,有以下四個命題:( )
①;②;③;④;
其中正確命題的序號為
A. ②④ B. ③④ C. ①③ D. ①④
【答案】C
【解析】
①根據(jù)線面垂直的性質(zhì)定理進行判斷;②利用長方體模型,借助于里面的線面關(guān)系進行判斷;
③根據(jù)兩條平行線中的一條垂直于某個平面,則另一條也垂直于該平面的定理完成推理;④也可以借助于長方體里面的線面關(guān)系,舉反例推翻此結(jié)論.
①一條直線垂直于兩平行平面中的一個平面,則該直線也垂直于另一平面,所以l⊥β,易知l⊥m,故①正確;
②④在長方體ABCD﹣A1B1C1D1中,取底面為α,側(cè)面ADA1D1為β,直線AA1為l,AD為m,由此可以說明②④都是錯誤的;
③由兩條平行線中的一條垂直于某個平面,則另一條也垂直于該平面可知m⊥α,又mβ,所以α⊥β,故③正確.
故答案為:C
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為( ,0),將函數(shù)f(x)圖象上的所有點的橫坐標伸長為原來的2倍(縱坐標不變),再將所得圖象向右平移0.5π個單位長度后得到函數(shù)g(x)的圖象;
(1)求函數(shù)f(x)與g(x)的解析式;
(2)當a≥1,求實數(shù)a與正整數(shù)n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足 是等差數(shù)列,且b1=a1 , b4=a3 .
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)且在處的切線的斜率為.
(1)求的值,并討論在上的單調(diào)性;
(2)設(shè)若對任意,總存在使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC= .
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 若方程f(x)=a|x﹣1|,(a∈R)有且僅有兩個不相等的實數(shù)解,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是(為參數(shù)).
(1)求直線l和曲線的普通方程;
(2)設(shè)直線l和曲線交于兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com