【題目】為了解高校學(xué)生平均每天使用手機(jī)的時(shí)間長(zhǎng)短是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了25 名男生、10名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:

平均每天使用手機(jī)小時(shí)

平均每天使用手機(jī)小時(shí)

合計(jì)

男生

15

10

25

女生

3

7

10

合計(jì)

18

17

35

(I)在參與調(diào)查的平均每天使用手機(jī)不超過(guò)3小時(shí)的7名女生中,有4人使用國(guó)產(chǎn)手機(jī),從這7名女生中任意選取2人,求至少有1人使用國(guó)產(chǎn)手機(jī)的概率;

(II) 根據(jù)列聯(lián)表,是否有90%的把握認(rèn)為學(xué)生使用手機(jī)的時(shí)間長(zhǎng)短與性別有關(guān)(的觀測(cè)值精確到0.01).

附:

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

【答案】(Ⅰ).

(Ⅱ)沒(méi)有90%的把握認(rèn)為學(xué)生使用手機(jī)的時(shí)間長(zhǎng)短與性別有關(guān).

【解析】試題分析】(I)利用列舉法列舉出所有的基本事件,共有,其中符合題意的有,故概率為.(II)計(jì)算,所以沒(méi)有90%的把握認(rèn)為學(xué)生使用手機(jī)的時(shí)間長(zhǎng)短與性別有關(guān).

試題解析】

(Ⅰ)設(shè)名女生中,使用國(guó)產(chǎn)手機(jī)的4人分別為,使用非國(guó)產(chǎn)手機(jī)的3人為.從7人中任選2人,共有21種情況,分別是,, ,,,,.

其中,事件 “至少有1人使用國(guó)產(chǎn)手機(jī)”包含18種情況,

所以,

答:至少有1人使用國(guó)產(chǎn)手機(jī)的概率.

(Ⅱ)由列聯(lián)表得:

由于,所以沒(méi)有90%的把握認(rèn)為學(xué)生使用手機(jī)的時(shí)間長(zhǎng)短與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的最小值;

(2)討論在區(qū)間上的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有5個(gè)大小質(zhì)地完全相同的球,其中2個(gè)紅球、3個(gè)黃球,從中不放回地依次隨機(jī)摸出2個(gè)球,求下列事件的概率:

1A=“第一次摸到紅球”;

2B=“第二次摸到紅球”;

3AB=“兩次都摸到紅球”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人的眼皮有單眼皮與雙眼皮之分,這是由對(duì)應(yīng)的基因決定的.生物學(xué)上已經(jīng)證明:決定眼皮單雙的基因有兩種,一種是顯性基因(記為),另一種是隱性基因(記為);基因總是成對(duì)出現(xiàn)(如、、),而成對(duì)的基因中,只要出現(xiàn)了顯性基因,那么這個(gè)人就一定是雙眼皮(也就是說(shuō),“單眼皮”的充要條件是“成對(duì)的基因是”);如果不發(fā)生基因突變的話(huà),成對(duì)的基因中,一個(gè)來(lái)自父親,另一個(gè)來(lái)自母親,但父母親提供基因時(shí)都是隨機(jī)的.有一對(duì)夫妻,兩人成對(duì)的基因都是,不考慮基因突變,求他們的孩子是單眼皮的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為,過(guò)點(diǎn)作與垂直的直線(xiàn)交軸負(fù)半軸于點(diǎn),且.

(1)若過(guò),,三點(diǎn)的圓恰好與直線(xiàn)相切,求橢圓的方程;

(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線(xiàn)與橢圓交于,兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,動(dòng)物園要圍成相同面積的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.

(1)現(xiàn)有可圍長(zhǎng)網(wǎng)的材料,每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間虎籠面積最大?

(2)若使每間虎籠面積為,則每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使圍成四間虎籠的鋼筋網(wǎng)總長(zhǎng)最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C的頂點(diǎn)為O0,0),焦點(diǎn)F01

)求拋物線(xiàn)C的方程;

)過(guò)F作直線(xiàn)交拋物線(xiàn)于AB兩點(diǎn).若直線(xiàn)OA、OB分別交直線(xiàn)ly=x﹣2M、N兩點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若關(guān)于的不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;

(3)求證:對(duì),都有.

查看答案和解析>>

同步練習(xí)冊(cè)答案