如圖,在多面體ABCDEF中,已知ABCD是邊長(zhǎng)為1的正方形,且△ADE、△BCF均為正三角形,EF∥AB,EF=2,則該多面體的體積為(  ).

[  ]

A.

B.

C.

D.

答案:A
解析:

解析  延長(zhǎng)BA到G,使AG=AB,延長(zhǎng)CD到H使DH=CD,連接GH,則四邊形ADHG是正方形,且BG=EF.因?yàn)镋F∥AB,所以△EHG與△FCB全等,△ADE、△BCF均為正三角形,故四棱錐E-ADHG是所有棱長(zhǎng)都為1的正四棱錐,易得正四棱錐E-ADHG的高為,VE-ADHG,這時(shí)三棱BCF-GHE可以繼續(xù)補(bǔ)形為平行六面體.GBCH-MNFE,此平行六面體的高就是正四棱錐E-ADHG的高,所以VBCF-GHE故所求多面體的體積為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
(3)若BC=2,求幾何體ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案