【題目】設(shè)正有理數(shù)a1是 的一個(gè)近似值,令a2=1+ ,求證:
(1) 介于a1與a2之間;
(2)a2比a1更接近于 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p: ,命題q:x∈R,x2﹣2ax+2﹣a=0,若命題“p∧q”是真命題,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣2]∪{1}
B.(﹣∞,﹣2]∪[1,2]
C.[1,+∞)
D.[﹣2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;
(3)AE等于何值時(shí),二面角D1﹣EC﹣D的大小為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】非空集合G關(guān)于運(yùn)算⊕滿足:
⑴對(duì)任意a,b∈G,都有a+b∈G;
⑵存在e∈G使得對(duì)于一切a∈G都有a⊕e=e⊕a=a,
則稱G是關(guān)于運(yùn)算⊕的融洽集,
現(xiàn)有下列集合與運(yùn)算:
①G是非負(fù)整數(shù)集,⊕:實(shí)數(shù)的加法;
②G是偶數(shù)集,⊕:實(shí)數(shù)的乘法;
③G是所有二次三項(xiàng)式構(gòu)成的集合,⊕:多項(xiàng)式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:實(shí)數(shù)的乘法;
其中屬于融洽集的是(請(qǐng)?zhí)顚懢幪?hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求實(shí)數(shù)a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 的左、右焦點(diǎn)分別為F1、F2 , P為C的右支上一點(diǎn),且|PF2|=|F1F2|,則 等于( )
A.24
B.48
C.50
D.56
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點(diǎn).應(yīng)用空間向量方法求解下列問(wèn)題.
(1)求EF的長(zhǎng)
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人都準(zhǔn)備于下午12:00﹣13:00之間到某車站乘某路公交車外出,設(shè)在12:00﹣13:00之間有四班該路公交車開(kāi)出,已知開(kāi)車時(shí)間分別為12:20;12:30;12:40;13:00,分別求他們?cè)谙率銮闆r下坐同一班車的概率.
(1)他們各自選擇乘坐每一班車是等可能的;
(2)他們各自到達(dá)車站的時(shí)刻是等可能的(有車就乘).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],若關(guān)于t的方程( )|t|+m+1=0(t∈R)有實(shí)數(shù)解,則m+n的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com