【題目】在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)且斜率為的直線與橢圓有兩個不同的交點(diǎn)和.
(1)求的取值范圍;
(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
【答案】(1) (2)沒有
【解析】解:(1)由已知條件知直線l的方程為
y=kx+,
代入橢圓方程得+(kx+)2=1.
整理得x2+2kx+1=0.①
直線l與橢圓有兩個不同的交點(diǎn)P和Q等價于Δ=8k2-4=4k2-2>0,
解得k<-或k>,
即k的取值范圍為∪.
(2)設(shè)P(x1,y1),Q(x2,y2),
則+=(x1+x2,y1+y2),
由方程①得x1+x2=-.②
又y1+y2=k(x1+x2)+2=,③
而A(,0),B(0,1),=(-,1),
所以+與共線等價于x1+x2=-(y1+y2).
將②③代入上式,解得k=.
由(1)知k<-或k>,故沒有符合題意的常數(shù)k.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,且時 ,則=______________
(2)若方程有兩個不相等的正根,則的取值范圍 ___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式an=5﹣n,其前n項(xiàng)和為Sn , 將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來順序恰為等比數(shù)列{bn}的前3項(xiàng),記{bn}的前n項(xiàng)和為Tn , 若存在m∈N* , 使對任意n∈N* , 總有Sn<Tn+λ恒成立,則實(shí)數(shù)λ的取值范圍是( )
A.λ≥2
B.λ>3
C.λ≥3
D.λ>2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)市場分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量為10噸至25噸時,月生產(chǎn)總成本(萬元)可以看出月產(chǎn)量(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時,月生產(chǎn)成本為20萬元,當(dāng)月產(chǎn)量為15噸時,月生產(chǎn)總成本最低至17.5萬元.
(I)寫出月生產(chǎn)總成本(萬元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;
(II)已知該產(chǎn)品銷售價為每噸1.6萬元,那么月產(chǎn)量為多少噸時,可獲得最大利潤,并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數(shù)f(x)的最小值是f(﹣1)=0,且c=1,求f (2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為( )
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)C在橢圓M: =1(a>b>0)上,若點(diǎn)A(﹣a,0),B(0, ),且 = .
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點(diǎn).線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點(diǎn)P(﹣3,0),直線l過點(diǎn)(0,﹣ ),求直線l的方程;
②若直線l過點(diǎn)(0,﹣1),且與x軸的交點(diǎn)為D.求D點(diǎn)橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過點(diǎn)(0,1),且與x軸有唯一交點(diǎn)。
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)在[1,2]上的最小值h(a)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com