(本題滿分14分)如圖多面體PQABCD由各棱長均為2的正四面體和正四棱錐拼接而成
(Ⅰ)證明PQ⊥BC;
(Ⅱ)若M為棱CQ上的點且,
求的取值范圍,使得二面角P-AD-M為鈍二面角。
(Ⅰ)見解析; (Ⅱ)
【解析】本試題主要是考查了立體幾何中的線線垂直的證明,以及二面角的求解的綜合運用。
(1)取AD中點E,連結(jié)PE,QE ……...2分
均為正三角形得到線線垂直,然后利用線面垂直得到線線垂直的性質(zhì)定理和判定定理的綜合運用。
(2)以正方形ABCD的中心O為原點,OF(F為AB的中點)為x軸,OQ為z軸,
建立空間坐標(biāo)系,設(shè)出點的坐標(biāo),然后借助于向量的夾角公式表示二面角的平面角的大小。
解:(Ⅰ)取AD中點E,連結(jié)PE,QE ……...2分
均為正三角形
AD
PE, AD
QE
AD
平面PEQ
AD
PQ
又AD//BC
PQ
BC
。。。。。。。。。6分
(Ⅱ)以正方形ABCD的中心O為原點,OF(F為AB的中點)為x軸,OQ為z軸,
建立空間坐標(biāo)系, 則P(0,-2,), Q(0,0,
),
B(1,1,0), C(-1,1,0),
A(1,-1,0), D(-1,-1,0) 。。。。。。。。。。8分
平面PAD法向量=(0,
,1) 。。。。。。。。。。10分
=(0,2,0),
平面ADM的法向量 。。。。。。。。。12分
。。。。。。。。。。。14分
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個矩形草坪,另外△AEF內(nèi)部有一文物保護區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點,F(xiàn)是AB中點,
(1)求證:;
(2)當(dāng)E是棱CC1中點時,求證:CF//平面AEB1;
(3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點,求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、
的邊長都是1,平面
平面
,點
在
上移動,點
在
上移動,若
(
)
(I)求的長;
(II)為何值時,
的長最��;
(III)當(dāng)的長最小時,求面
與面
所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com