【題目】已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),且對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,則方程f(x)﹣f′(x)=2的解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,2)
D.(2,3)
【答案】C
【解析】解:根據(jù)題意,對任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3, 又由f(x)是定義在(0,+∞)上的單調(diào)函數(shù),
則f(x)﹣log2x為定值,
設(shè)t=f(x)﹣log2x,則f(x)=log2x+t,
又由f(t)=3,即log2t+t=3,
解可得,t=2;
則f(x)=log2x+2,f′(x)= ,
將f(x)=log2x+2,f′(x)= 代入f(x)﹣f′(x)=2,
可得log2x+2﹣ =2,
即log2x﹣ =0,
令h(x)=log2x﹣ ,
分析易得h(1)=﹣ <0,h(2)=1﹣ >0,
則h(x)=log2x﹣ 的零點在(1,2)之間,
則方程log2x﹣ =0,即f(x)﹣f′(x)=2的根在(1,2)上,
故選C.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線C1:x=﹣2,圓C2:(x﹣1)2+(y﹣2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求C1 , C2的極坐標方程;
(Ⅱ)若直線C3的極坐標方程為θ= (ρ∈R),設(shè)C2與C3的交點為M,N,求△C2MN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線C經(jīng)過定點P(3,),它的一個焦點為F(1,0),對應于該焦點的準線為x=-1,斜率為2的直線交圓錐曲線C于A、B兩點,且 AB =,求圓錐曲線C和直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,∠BAC= ,P為∠BAC內(nèi)部一點,過點P的直線與∠BAC的兩邊交于點B,C,且PA⊥AC,AP= .
(Ⅰ)若AB=3,求PC;
(Ⅱ)求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),α∈[0,π)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標方程;
(Ⅱ)若曲線C1與C2交于A,B兩點,且|AB|> ,求α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線城市 | 一線城市 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
由算得,,
參照附表,得到的正確結(jié)論是
A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”
C. 有99%以上的把握認為“生育意愿與城市級別有關(guān)”
D. 有99%以上的把握認為“生育意愿與城市級別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究某地區(qū)晝夜溫差大小與患感冒就診人數(shù)之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1到5月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 |
晝夜溫差 | 8 | 10 | 13 | 12 | 9 |
就診人數(shù)(個) | 18 | 25 | 28 | 26 | 17 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取一組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用選取的一組數(shù)據(jù)進行檢驗.
(1)若選取的是1月的一組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù).求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2,則認為得到的線性回歸方程是理想的,試判斷該小組所得的線性回歸方程是否理想?如果不理想,請說明理由,如果理想,試預測晝夜溫差為時,因感冒而就診的人數(shù)約為多少?
參考公式:, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l過點P(2, )且傾斜角為α,以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ=4cos(θ﹣ ),直線l與曲線C相交于A,B兩點;
(1)求曲線C的直角坐標方程;
(2)若 ,求直線l的傾斜角α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線y=x2+mx﹣2與x軸交于A、B兩點,點C的坐標為(0,1),當m變化時,解答下列問題:(12分)
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A、B、C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com