數(shù)列的前n項和為,和滿足等式
(Ⅰ)求的值;
(Ⅱ)求證:數(shù)列是等差數(shù)列;
(Ⅲ)若數(shù)列滿足,求數(shù)列的前n項和;
(Ⅳ)設(shè),求證:
(Ⅰ)="8" (Ⅱ)見解析(III)(Ⅳ)見解析
解析試題分析:(Ⅰ)令n=1,代入即可; (Ⅱ)利用兩邊同除以n+1,構(gòu)造等差數(shù)列即可; (III)由(II)可知數(shù)列是等差數(shù)列,求出的解析式,再利用求出的通項公式,代入,求出,再利用錯位相減法求出數(shù)列的前n項和;(Ⅳ)由(III)知,代入,求出的通項公式,再求出其前n項和,最后利用放縮法得到所求結(jié)果.
試題解析:(Ⅰ)由已知:
(Ⅱ)∵,同除以n+1,則有:,所以是以3為首項,1為公差的等差數(shù)列.
(III)由(II)可知,
當(dāng) 經(jīng)檢驗,當(dāng)n=1時也成立
解得:
(Ⅳ)∵
考點(diǎn):1.等差數(shù)列的定義; 2.錯位相減法求n前項和;3.放縮法
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前n項和為,且,.
(Ⅰ)求數(shù)列的通項;
(Ⅱ)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列 前項和為,且滿足
(1)求數(shù)列的通項公式;
(2)求數(shù)列前項和;
(3)在數(shù)列中,是否存在連續(xù)的三項,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項,公差.且分別是等比數(shù)列的.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)均有…成立,求…的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前三項依次為、4、,前項和為,且.
(1)求及的值;
(2)設(shè)數(shù)列的通項,證明數(shù)列是等差數(shù)列,并求其前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明:對一切正整數(shù)n,有++…+<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項數(shù)列的首項,前項和滿足.
(Ⅰ)求證:為等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)記數(shù)列的前項和為,若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足(為常數(shù)),成等差數(shù)列.
(Ⅰ)求p的值及數(shù)列的通項公式;
(Ⅱ)設(shè)數(shù)列滿足,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com