【題目】在△ABC中,角A、B、C所對的邊長分別為a,b,c且滿足csinA= acosC,則sinA+sinB的最大值是(
A.1
B.
C.3
D.

【答案】D
【解析】解:∵csinA= acosC,
∴由正弦定理可得sinCsinA= sinAcosC,
∴tanC= ,
即C= ,則A+B= ,
∴B= ﹣A,0<A< ,
∴sinA+sinB=sinA+sin( ﹣A)=sinA+ = sinA+ cos A= sin(A+ ),
∵0<A< ,
<A+ ,
∴當(dāng)A+ = 時,sinA+sinB取得最大值 ,
故選:D.
【考點(diǎn)精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的算法流程圖中,輸出S的值為(

A.32
B.42
C.52
D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017四川宜賓二診】已知函數(shù).

(I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))

(II)設(shè)函數(shù),當(dāng)時,曲線有兩個交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xlnx,g(x)= ,直線l:y=(k﹣3)x﹣k+2
(1)函數(shù)f(x)在x=e處的切線與直線l平行,求實(shí)數(shù)k的值
(2)若至少存在一個x0∈[1,e]使f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍
(3)設(shè)k∈Z,當(dāng)x>1時f(x)的圖象恒在直線l的上方,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為數(shù)列的前n項(xiàng)和,已知an>0,an2+2an=4Sn﹣1.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017重慶二診】已知函數(shù),設(shè)關(guān)于的方程個不同的實(shí)數(shù)解,則的所有可能的值為(

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14分如圖,已知橢圓,其左右焦點(diǎn)為,過點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.

1求橢圓的方程;

2的面積為,為原點(diǎn)的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A( +1,0),B(0,2).若直線l:y=k(x﹣1)+1與線段AB相交,則直線l傾斜角α的取值范圍是(
A.[ , ]
B.[0, ]
C.[0, ]∪[ ,π)
D.[ ,π)

查看答案和解析>>

同步練習(xí)冊答案