已知曲線C的方程是
x2
m
+y2=1(m∈R
,且m≠0),給出下面三個(gè)命題:
①若曲線C表示圓,則m=1;
②若曲線C表示橢圓,則m的值越大,橢圓的離心率越大;
③若曲線C表示雙曲線,則m的值越大,雙曲線的離心率越;
其中正確的命題是______.(填寫所有正確命題的序號(hào))
若曲線C表示圓,應(yīng)該滿足
1
m
=1
即m=1,故①對(duì);
若C若曲線C表示橢圓,當(dāng)m<1時(shí),橢圓的離心率e=
1-m
1
=
1-m
,m的值越大,橢圓的離心率越小,故②錯(cuò);
若C若曲線C表示雙曲線,有m<0時(shí),雙曲線的離心率e=
1+m
1
=
1+m
,m的值越大,雙曲線的離心率越小,故③對(duì).
故答案為:①③.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)坐標(biāo)為F1(-5,0),F(xiàn)2(5,0),離心率e=
5
3
,P為橢圓上一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若PF1⊥PF2,求S△PF1F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓
x2
5
+
y2
4
=1
的焦距是( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為4,F(xiàn)1F2分別是橢圓C的左,右焦點(diǎn),直線y=x與橢圓C在第一象限內(nèi)的交點(diǎn)為A,△AF1F2的面積為2
6
,點(diǎn)P(x0,y0),是橢圓C上的動(dòng)點(diǎn)w.
(1)求橢圓C的方程;
(2)若∠F1PF2為鈍角,求點(diǎn)P的橫坐標(biāo)x0的取值范圍;
(3)求
3
PF1+
2
PA的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F1是橢圓
x2
25
+
y2
9
=1
的左焦點(diǎn),P是橢圓上的動(dòng)點(diǎn),A(1,1)是一定點(diǎn),則PA+PF1的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的任意一條與x軸不垂直的弦,O是橢圓的中心,e為橢圓的離心率,M為AB的中點(diǎn),則KAB•KOM的值為( 。
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),c=
a2-b2
,圓(x-c)2+y2=c2與橢圓恰有兩個(gè)公共點(diǎn),則橢圓的離心率e的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程mx2+(2-m)y2=1表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)m的取值范圍是( 。
A.(1,+∞)B.(0,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過定點(diǎn)A(1,2),則橢圓的中心到準(zhǔn)線的距離的最小值______.

查看答案和解析>>

同步練習(xí)冊(cè)答案