【題目】如圖,在四棱錐中,底而為正方形,底面,,點(diǎn)為棱的中點(diǎn),點(diǎn),分別為棱,上的動(dòng)點(diǎn)(,與所在棱的端點(diǎn)不重合),且滿足.

(1)證明:平面平面

(2)當(dāng)三棱錐的體積最大時(shí),求二面角的余弦值

【答案】(1)見(jiàn)解析;(2)

【解析】

1)連結(jié)連結(jié),則,,,,易證,則,可得平面平面.解法二:通過(guò)建立空間直角坐標(biāo)系,找出平面平面的法向量,通過(guò)法向量互相垂直來(lái)證明.

(2)通過(guò)建立空間直角坐標(biāo)系,找到兩個(gè)平面法向量之間的夾角余弦,從而得到二面角的余弦值.

(1)【解法一】:(綜合法)

證明:連接,連接.

因?yàn)榈酌?/span>為正方形,所以,,

又因?yàn)?/span>,所以.

底面知,底面,

底面,所以;

;平面,所以平面.

中,因?yàn)?/span>,,所以,即,

所以平面.

平面,所以平面平面.

【解法二】

(向量法)

因?yàn)?/span>底面,,以為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立如圖所示的空間直角坐標(biāo)系.則

,,.設(shè),則.

,,,.

設(shè)為平面的一個(gè)法向量,則

可取.

設(shè)為平面的一個(gè)法向量,則

可取.

因?yàn)?/span>,所以.

所以平面平面.

(2)解:設(shè)

由題意知,,又,

所以.

易知當(dāng)三棱錐的體積最大時(shí),,即此時(shí)分別為棱,的中點(diǎn).

為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸正方向,建立如圖所示的空間直角坐標(biāo)系.

,,.

,,.

設(shè)是平面的法向量,則

可取.

設(shè)是平面的法向量,則

可取.

.

由圖知所求二面角為鈍二面角,所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,邊上一點(diǎn),,.

(1)證明:平面平面.

(2)若,試問(wèn):是否與平面平行?若平行,求三棱錐的體積;若不平行,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,斜率為的直線經(jīng)過(guò)點(diǎn).

(I)求曲線的普通方程和直線的參數(shù)方程;

(II)設(shè)直線與曲線相交于,兩點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)為了調(diào)查高粱的高度、粒的顏色與產(chǎn)量的關(guān)系,對(duì)700棵高粱進(jìn)行抽樣調(diào)查,得到高度頻數(shù)分布表如下:

表1:紅粒高粱頻數(shù)分布表

農(nóng)作物高度()

頻 數(shù)

2

5

14

13

4

2

表2:白粒高粱頻數(shù)分布表

農(nóng)作物高度()

頻 數(shù)

1

7

12

6

3

1

(1)估計(jì)這700棵高粱中紅粒高粱的棵數(shù);

(2)估計(jì)這700棵高粱中高粱高()在的概率;

(3)在樣本的紅粒高粱中,從高度(單位:)在中任選3棵,設(shè)表示所選3棵中高(單位:)在的棵數(shù),求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)實(shí)力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實(shí)現(xiàn)翻番.同時(shí)該家庭的消費(fèi)結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計(jì)了該家庭這兩年不同品類的消費(fèi)額占全年總收入的比例,得到了如下折線圖:

則下列結(jié)論中正確的是( )

A. 該家庭2018年食品的消費(fèi)額是2014年食品的消費(fèi)額的一半

B. 該家庭2018年教育醫(yī)療的消費(fèi)額與2014年教育醫(yī)療的消費(fèi)額相當(dāng)

C. 該家庭2018年休閑旅游的消費(fèi)額是2014年休閑旅游的消費(fèi)額的五倍

D. 該家庭2018年生活用品的消費(fèi)額是2014年生活用品的消費(fèi)額的兩倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰梯形,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).

1)求證:平面平面

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語(yǔ)言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案