若不等式x2-
3
2
x-t>0對x∈[-1,1]恒成立,則t的取值范圍是
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先令y=x2-
3
2
x-t,找到對稱軸x=
3
4
,
3
4
∈[-1,1],由此y=
3
4
時最小,找出函數(shù)在[-1,1]上的最小值解不等式即可.
解答: 解:令函數(shù)y=x2-
3
2
x
-t
有對稱軸x=
3
4
,
∴函數(shù)在[-1,1]上的最小值為:
y最小=(
3
4
)
2
-
3
2
×
3
4
-t>0,
解得:t<-
9
16
,
故答案為:(-∞,-
9
16
).
點評:本題考查了二次函數(shù)的最值,對稱軸以及解不等式,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,公差為d.已知S2,S3+1,S4成等差數(shù)列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比數(shù)列,求
an-2
Sn
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某基金管理公司管理著一只開放式基金,用xn表示該基金在第n年初的總資產(chǎn),該基金相對于年初的總資產(chǎn)來說,年投資收益率為a,在第n年內(nèi),該基金持有人贖回該基金的資金與xn成正比,投資者購買該基金的資金與xn成反比,比例系數(shù)依次為正常數(shù)b、c(贖回后該基金的資產(chǎn)相應(yīng)減少,購買后該基金的資產(chǎn)相應(yīng)增加).該基金每年向管理公司交納管理費,向基金持有人分紅的紅利和其他開支合計為正常數(shù)d.
(1)求xn+1和xn的關(guān)系式;
(2)若x1取一個恰當?shù)闹禃r可使該基金每年年初的總資產(chǎn)保持不變,試寫出a、b、c、d應(yīng)滿足的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:長方體ABCD-A1B1C1D1,AB=2,AD=4,AA1=4,O為對角線AC1的中點,過O的直線與長方體表面交于兩點M,N,P為長方體表面上的動點,則
PM
PN
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象與兩坐標軸的交點分別為(-1,0)和(0,-1),且頂點在y軸的右側(cè),則實數(shù)b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=|sinx|+sin|x|(x∈R)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知c>1,a=
c+1
-
c
,b=
c
-
c-1
,則正確a、b的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列四個命題:
①函數(shù)f(x)=ax-1+3(a>0,a≠1)的圖象一定過定點P(1,4);
②函數(shù)y=|log
1
2
x|的單調(diào)遞減區(qū)間為(0,+∞);
③已知f(x)=x5+ax3+bx-8,且f(-2)=8,則f(2)=-8;
④已知2a=3b=k(k≠1)且
1
a
+
2
b
=1,則實數(shù)k=18;
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA是圓O的切線,切點為A,PO交圓O于B,C兩點,且PA=2,PB=1,則AB的長為
 

查看答案和解析>>

同步練習冊答案