19.函數(shù)$y=2tan(3x+\frac{π}{4})$的最小正周期是( 。
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 直接由三角函數(shù)的周期公式求得答案.

解答 解:由正切型函數(shù)的周期公式可得:
函數(shù)$y=2tan(3x+\frac{π}{4})$的最小正周期是T=$\frac{π}{3}$.
故選:C.

點評 本題考查三角函數(shù)的周期及其求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,x>0}\\{-{x}^{2}+bx+c,x≤0}\end{array}\right.$滿足f(0)=1,且f(0)+2f(-1)=0,那么函數(shù)g(x)=f(x)+x有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{2x}{{x}^{2}-1}$.
(1)求f[f(2)]的值;
(2)判斷f(x)的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,己知(c+a-b)(b+c-a)=3ab,則角C的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{y^2}{9}-\frac{x^2}{16}$=1的實軸長是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{6}}}{3}$,以橢圓的四個頂點為頂點的四邊形的面積為$4\sqrt{3}$.
(1)求橢圓的方程;
(2)斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,過線段AB的中點與AB垂直的直線交直線x=3于P點,若△ABP為等邊三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.α=3弧度,則角α是第二象限角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ex,g(x)=ax2+bx+c.
(1)若f(x)的圖象與g(x)的圖象的一個公共點在y軸上,且在該店處兩條曲線的切線相同,求b和c的值;
(2)若a=c=1,b=0,試著比較f(x)與g(x)的大小,并說明理由;
(3)若函數(shù)t(x)與函數(shù)f(x)的圖象關于直線y=x對稱,且直線y=g′(x)是函數(shù)t(x)圖象的切線,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.$x∈[{-\frac{π}{6},\frac{π}{2}}]$時,函數(shù)y=2cosx+1的值域為[1,3].

查看答案和解析>>

同步練習冊答案