【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列,在我國南宋數(shù)學(xué)家楊輝所著的《評解九章算法》(年)一書中用如圖所示的三角形解釋二項式乘方展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:,,,,,,,,,,,,,,…….記作數(shù)列,若數(shù)列的前項和為,則=( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市9年前分別同時開始建設(shè)物流城和濕地公園,物流城3年建設(shè)完成,建成后若年投入x億元,該年產(chǎn)生的經(jīng)濟(jì)凈效益為億元;濕地公園4年建設(shè)完成,建成后的5年每年投入見散點圖.公園建成后若年投入x億元,該年產(chǎn)生的經(jīng)濟(jì)凈效益為億元.
(1)對濕地公園,請在中選擇一個合適模型,求投入額x與投入年份n的回歸方程;
(2)從建設(shè)開始的第10年,若對物流城投入0.25億元,預(yù)測這一年物流城和濕地公園哪個產(chǎn)生的年經(jīng)濟(jì)凈效益高?請說明理由.
參考數(shù)據(jù)及公式:,;當(dāng)時,,,回歸方程中的;回歸方程斜率與截距,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(為參數(shù)),直線 (為參數(shù), ),直線與曲線相切于點,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程及點的極坐標(biāo);
(2)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為,直線與曲線交于在,兩點,記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為
A. 15名志愿者身高的極差小于臂展的極差
B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,
C. 可估計身高為190厘米的人臂展大約為189.65厘米,
D. 身高相差10厘米的兩人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABC,BC=3,PB=2,PC,則三棱錐P﹣ABC外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)證明:當(dāng)時,;
(2)若是函數(shù)=在內(nèi)零點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可吸入肺顆粒物.我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo),某試點城市環(huán)保局從該市市區(qū)2019年上半年每天的監(jiān)測數(shù)據(jù)中隨機(jī)的抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如下莖葉圖所示(十位為莖,個位為葉).
(1)在這15天的日均監(jiān)測數(shù)據(jù)中,求其中位數(shù);
(2)從這15天的數(shù)據(jù)中任取2天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求的分布列及數(shù)學(xué)期望;
(3)以這15天的日均值來估計該市下一年的空氣質(zhì)量情況,則一年(按365天計算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項和為,且
(1)求數(shù)列通項公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()經(jīng)過點,且兩個焦點,的坐標(biāo)依次為和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),是橢圓上的兩個動點,為坐標(biāo)原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com