已知cosα+cosβ=
1
2
,sinα+sinβ=
1
3
,求cos(α-β)的值.
考點:兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:已知兩式平方相加,結合兩角差的余弦公式可得.
解答: 解:∵cosα+cosβ=
1
2
,sinα+sinβ=
1
3

∴兩式平方相加可得cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ=(
1
2
)2+(
1
3
)2

化簡可得2+2(cosαcosβ+sinαsinβ)=
13
36
,
∴cos(α-β)=cosαcosβ+sinαsinβ=-
59
72
點評:本題考查兩角和與差的三角函數(shù),平方相加是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a1=1,S3=6,正項數(shù)列{bn}滿足b1•b2•b3…bn=2 Sn
(1)求數(shù)列{an},{bn}的通項公式;
(2)若λbn>an對n∈N*均成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:a2sin810°+b2tan765°+(a2-b2)tan1125°-2abcos360°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用一段長為30m的籬笆圍成一個一邊靠墻的矩形菜園,墻長18m,要求菜園的面積不小于216m2,靠墻的一邊長為xm,其中的不等關系可用不等式(組)表示為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x-1),已知當x1,x2∈[0,1]且x1<x2時,(x2-x1)[f(x1)-f(x2)]>0,則有
①2是函數(shù)f(x)的周期;
②函數(shù)f(x)無最大值,有最小值是0;
③函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
④函數(shù)的對稱軸x=k,k∈Z.
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知為虛數(shù)單位,復數(shù)z=i(2-i),則|z|=( 。
A、
5
B、
3
C、1
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求導:y=
x+sinx
x-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(
7
3
)
5
×(
8
21
)
0
÷(
7
9
)
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求y=x-
x
4
的值域.

查看答案和解析>>

同步練習冊答案