如圖,已知△ABC內(nèi)接于⊙O,點D在OC的延長線上,AD切⊙O于A,若∠ABC=30°,AC=2,則AD的長為________.


分析:根據(jù)已知可得△AOC是等邊三角形,從而得到OA=AC=2,則可以利用勾股定理求得AD的長.
解答:(2)∵OA=OC,∠AOC=60°,
∴△AOC是等邊三角形,
∴OA=AC=2,
∵∠OAD=90°,∠D=30°,
∴AD=•AO=
故答案為:
點評:本題考查和圓有關的比例線段,考查同弧所對的圓周角等于弦切角,本題在數(shù)據(jù)運算中主要應用含有30°角的直角三角形的性質(zhì),本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC內(nèi)接于⊙O,點D在OC的延長線上,AD切⊙O于A,若∠ABC=30°,AC=2,則AD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE;
(2)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,EC⊥平面ABC,AB=2AC=2,tan∠DAB=
3
2

(1)設F是CD的中點,證明:OF∥平面ADE;
(2)求點B到平面ADE的距離;
(3)畫出四棱錐A-BCED的正視圖(圓O在水平面,ABD在正面,要求標明垂直關系與至少一邊的長).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于圓⊙O,點D在OC的延長線上,AD是⊙O的切線,若∠B=30°,AC=
3
,則△CAD的面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE;
(2)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達式;
(3)當V(x)取得最大值時,求證:AD=CE.

查看答案和解析>>

同步練習冊答案