定義在(0,+∞)上的增函數(shù)f(x)滿足:對(duì)任意的x>0,y>0都有f(xy)=f(x)+f(y),
(1)求f(1) 的值;
(2)請(qǐng)舉出一個(gè)符合條件的函數(shù)f(x);
(3)若f(2)=1,解不等式f(x2-5)-f(x)<2.
【答案】分析:(1)令x=y=1即可求出
(2)舉一底數(shù)大于1的對(duì)手函數(shù)即可.
(3)先由f(2)=1求出f(4)=2,f(x2-5)-f(x)<2?f(x2-5)<f(x)+f(4)=f(4x),
再由單調(diào)性轉(zhuǎn)化出等價(jià)不等式求解即可.
解答:解:(1)令x=y=1,
則f(1)=f(1)+f(1)⇒f(1)=0.
(2)y=logax(a>1)
(3)f(2)=1
∴2=1+1=f(2)+f(2)=f(4)
∴原不等式等價(jià)于f(x2-5)<f(x)+f(4)=f(4x),
因?yàn)閒(x)是定義在(0,+∞)上的增函數(shù),所以

所以原不等式解集是
點(diǎn)評(píng):本題考查抽象函數(shù)的解題方法:賦值法及函數(shù)單調(diào)性的應(yīng)用:解不等式,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,1)上的函數(shù)f(x),對(duì)任意的m,n∈(1,+∞)且m<n時(shí),都有f(
1
n
)-
f(
1
m
)=f(
m-n
1-mn
)
an=f(
1
n2+5n+5
)
,n∈N*,則在數(shù)列{an}中,a1+a2+…a8=( 。
A、f(
1
2
)
B、f(
1
3
)
C、f(
1
4
)
D、f(
1
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在(0,1)上的函數(shù),且滿足:①對(duì)任意x∈(0,1),恒有f(x)>0;②對(duì)任意x1,x2∈(0,1),恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2
,則下面關(guān)于函數(shù)f(x)判斷正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)已知定義在區(qū)間[0,
2
]上的函數(shù)y=f(x)的圖象關(guān)于直線x=
4
對(duì)稱,當(dāng)x
4
時(shí),f(x)=cosx,如果關(guān)于x的方程f(x)=a有解,記所有解的和為S,則S不可能為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

填空題
(1)已知
cos2x
sin(x+
π
4
)
=
4
3
,則sin2x的值為
1
9
1
9

(2)已知定義在區(qū)間[0,
2
]
上的函數(shù)y=f(x)的圖象關(guān)于直線x=
4
對(duì)稱,當(dāng)x≥
4
時(shí),f(x)=cosx,如果關(guān)于x的方程f(x)=a有四個(gè)不同的解,則實(shí)數(shù)a的取值范圍為
(-1,-
2
2
)
(-1,-
2
2
)


(3)設(shè)向量
a
,
b
,
c
滿足
a
+
b
+
c
=
0
(
a
-
b
)⊥
c
,
a
b
,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖州二模)定義在(0,
π
2
)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)<f′(x)tanx成立,則(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案