已知|
a
|=1,|
b
|=
2
,且向量(
a
-
b
)和
a
垂直,則
a
b
的值為(  )
A、0
B、1
C、
2
D、-
2
考點:數(shù)量積判斷兩個平面向量的垂直關系
專題:平面向量及應用
分析:由于向量(
a
-
b
)和
a
垂直,可得(
a
-
b
)•
a
=0.展開即可得出.
解答: 解:∵向量(
a
-
b
)和
a
垂直,∴(
a
-
b
)•
a
=
a
2
-
a
b
=0.
a
b
=
a
2
=1

故選:B.
點評:本題考查了向量垂直與數(shù)量積的關系、向量的數(shù)量積運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若tanA=
1
2
,tanB=
1
3
,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l過點(0,2)且與雙曲線x2-y2=6的右支有兩個不同的交點,則l的傾斜角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高二學生在參加歷史、地理反向會考中,兩門科目考試成績互不影響.記X為“該學生取得優(yōu)秀的科目數(shù)”,其分布列如表所示,則D(X)的最大值是( 。
X 0 1 2
P a b
1
2
A、
1
2
B、
3
2
C、1
D、
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線x2-
y2
2
=1
的右焦點到準線的距離為( 。
A、
1
8
B、
2
3
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在回歸分析中,R2=1-
n
i=1
(y1-
.
y
1
)
2
n
i=1
(y1+
.
y
1
)
2
用來刻畫回歸的效果,甲、乙、丙三個模型中已知R2=0.76,R2=0.95,R2=0.83,則這三個模型的擬合效果由差到好的順序是( 。
A、甲、丙、乙
B、乙、丙、甲
C、丙、乙、甲
D、甲、乙、丙

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),若復數(shù)z=(x2-9)+(x-3)i為純虛數(shù),則實數(shù)x值為( 。
A、-3B、0C、3D、-3或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點A(-2,3),B(3,1),若直線ax+y+2=0與線段AB沒有交點,則a的取值范圍是( 。
A、(-∞,-
5
2
]∪[1,+∞)
B、(-1,
5
2
C、[-
5
2
,1]
D、(-∞,-1]∪[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=2cosx的圖象經(jīng)過怎樣的變換能變成函數(shù)y=2cos(2x+
π
3
)的圖象(  )
A、向左平移
π
3
個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變
B、向左平移
π
6
個單位長度,再將圖象上各點的橫坐標縮短到原來的
1
2
,縱坐標不變
C、將圖象上各點的橫坐標縮短到原來的
1
2
,縱坐標不變,再向左平移
π
6
個單位長度
D、將圖象上各點的橫坐標伸長到原來的2倍,縱坐標不變,再向左平移
π
6
個單位長度

查看答案和解析>>

同步練習冊答案