【題目】某公司對新招聘的員工張某進行綜合能力測試,共設(shè)置了A,B,C三個測試項目.假定張某通過項目A的概率為 ,通過項目B,C的概率均為a(0<a<1),且這三個測試項目能否通過相互獨立.
(1)用隨機變量X表示張某在測試中通過的項目個數(shù),求X的概率分布和數(shù)學(xué)期望E(X)(用a表示);
(2)若張某通過一個項目的概率最大,求實數(shù)a的取值范圍.

【答案】
(1)解:隨機變量X的可能取值為0,1,2,3.

,

,

從而X的分布列為

X

0

1

2

3

P

X的數(shù)學(xué)期望為


(2)解:

,

和0<a<1,得

即a的取值范圍是


【解析】(1)隨機變量X的可能取值為0,1,2,3.分別求出相應(yīng)的概率,由此能求出X的分布列和數(shù)學(xué)期望.(2)由已知條件結(jié)合概率的性質(zhì)列出方程組,能求出a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機數(shù),分別在下列條件下,求上述方程有實根的概率.

(1)若隨機數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個數(shù),b是從區(qū)間[2,4]中任取的一個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和費率浮動比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax3﹣3x2+1(a>0),定義h(x)=max{f(x),g(x)}=
(1)求函數(shù)f(x)的極值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求實數(shù)a的取值范圍;
(3)若g(x)=lnx,試討論函數(shù)h(x)(x>0)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,則下列命題正確的是(寫出所有正確命題的編號).
①若ab>c2 , 則C<
②若a+b>2c,則C<
③若a3+b3=c3 , 則C<
④若(a+b)c≤2ab,則C>
⑤若(a2+b2)c2≤2a2b2 , 則C>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{xn}滿足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
(Ⅰ)證明:{xn}是遞減數(shù)列的充分必要條件是c<0;
(Ⅱ)求c的取值范圍,使{xn}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為ρsin()=2
(Ⅰ)求曲線C和直線l在該直角坐標系下的普通方程;
(Ⅱ)動點A在曲線C上,動點B在直線l上,定點P的坐標為(﹣2,2),求|PB|+|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是________(填序號).

①若,分別是平面α,β的一個法向量,則α∥β;

②若分別是平面α,β的一個法向量,則α⊥β·=0;

③若是平面α的一個法向量,與平面α共面,則·=0;

④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.

查看答案和解析>>

同步練習(xí)冊答案