【題目】已知函數(shù)
當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);
若函數(shù)是奇函數(shù),求的值;
在的條件下,解不等式
【答案】(1)證明見解析;(2);(3).
【解析】
試題(1)證明函數(shù)不是奇函數(shù),只要找出關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)的函數(shù)值不等即可;
(2)方法一:由奇函數(shù)的定義,,代入進(jìn)行化簡,對(duì)恒成立即可得出m,n的值;方法二:由奇函數(shù)的性質(zhì)知,代入函數(shù)解析式解得,函數(shù)解析式可化為,又由得,將m,n的值代入解析式,再利用奇函數(shù)的定義檢驗(yàn)即可;
(3)由(2)可知的關(guān)系式,由在R上是單調(diào)減函數(shù),且函數(shù)為奇函數(shù),由,得,即可解得不等式.
試題解析:
解:(1)當(dāng)時(shí),,
函數(shù)不是奇函數(shù)。
(2)方法一:
由定義在R上的函數(shù)是奇函數(shù)得對(duì)一切恒成立
即,
整理得對(duì)任意恒成立,
故,解得,
方法二:由題意可知,此時(shí),
又由得,
此時(shí),經(jīng)檢驗(yàn)滿足符合題意。
(3)由在R上是單調(diào)減函數(shù),
又因?yàn)楹瘮?shù)為奇函數(shù)且,由得
化簡得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(l,2)在函數(shù)f(x)=ax3的圖象上,則過點(diǎn)A的曲線C:y=f(x)的切線方程是( 。
A. 6x﹣y﹣4=0 B. x﹣4y+7=0
C. 6x﹣y﹣4=0或x﹣4y+7=0 D. 6x﹣y﹣4=0或3x﹣2y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列。在歐洲,這個(gè)表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年發(fā)現(xiàn)這一規(guī)律的,比楊輝要遲393年,比賈憲遲600年。右圖的表在我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里就出現(xiàn)了,這又是我國數(shù)學(xué)史上的一個(gè)偉大成就。如圖所示,在“楊輝三角”中,從1開始箭頭所指的數(shù)組成一個(gè)鋸齒形數(shù)列:1,2,3,3,6,4,10,5,…,則此數(shù)列前16項(xiàng)和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2016年底,共享單車日漸火爆起來,逐漸融入大家的日常生活中,某市針對(duì)18歲到80歲之間的不同年齡段的城市市民使用共享單車情況進(jìn)行了抽樣調(diào)查,結(jié)果如下表所示:
(1)采用分層抽樣的方式從年齡在內(nèi)的人中抽取人,求其中男性、女性的使用人數(shù)各為多少?
(2)在(1)中選出人中隨機(jī)抽取4人,求其中恰有2人是女性的概率;
(3)用樣本估計(jì)總體,在全市18歲到80歲的市民中抽4人其中男性使用的人數(shù)記為,求的分布列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子產(chǎn)品生產(chǎn)企業(yè)生產(chǎn)一種產(chǎn)品,原計(jì)劃每天可以生產(chǎn)噸產(chǎn)品,每噸產(chǎn)品可以獲得凈利潤萬元,其中,由于受市場低迷的影響,該企業(yè)的凈利潤出現(xiàn)較大幅度下滑.為提升利潤,該企業(yè)決定每天投入20萬元作為獎(jiǎng)金刺激生產(chǎn).在此方案影響下預(yù)計(jì)每天可增產(chǎn)噸產(chǎn)品,但是受原材料數(shù)量限制,增產(chǎn)量不會(huì)超過原計(jì)劃每天產(chǎn)量的四分之一.試求在每天投入20萬元獎(jiǎng)金的情況下,該企業(yè)每天至少可獲得多少利潤(假定每天生產(chǎn)出來的產(chǎn)品都能銷售出去).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=8內(nèi)有一點(diǎn)P0(﹣1,2),AB為過點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=135°時(shí),求弦AB的長;
(2)當(dāng)弦AB被P0平分時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組有男生20人,女生10人,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生,則
①該抽樣可能是系統(tǒng)抽樣;
②該抽樣可能是隨機(jī)抽樣:
③該抽樣一定不是分層抽樣;
④本次抽樣中每個(gè)人被抽到的概率都是.
其中說法正確的為( )
A.①②③B.②③C.②③④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,C為直線y=5上的動(dòng)點(diǎn),以C為圓心的圓C截y軸所得的弦長恒為6,過原點(diǎn)O作圓C的一條切線,切點(diǎn)為P,則點(diǎn)P到直線3x+4y﹣25=0的距離的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線,動(dòng)直線過定點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于兩點(diǎn),點(diǎn)是的中點(diǎn),直線與直線相交于點(diǎn). 探索是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com