【題目】已知函數(shù),

1)若對(duì)任意,,都有,求實(shí)數(shù)的取值范圍;

2)在第(1)問(wèn)求出的實(shí)數(shù)的范圍內(nèi),若存在一個(gè)與有關(guān)的負(fù)數(shù),使得對(duì)任意時(shí)恒成立,求的最小值及相應(yīng)的.

【答案】1;(2)當(dāng)時(shí),的最小值為.

【解析】

1)利用作差法比較大小即可;

2)由(1)可知的圖象是開(kāi)口向上,對(duì)稱(chēng)軸的拋物線(xiàn),將對(duì)任意時(shí)恒成立轉(zhuǎn)化為,分別討論的情況,進(jìn)而求解即可

1)依題意知

,

因?yàn)?/span>,所以,則,即實(shí)數(shù)的取值范圍是

2)對(duì)任意時(shí),恒成立等價(jià)于”,

由(1)可知實(shí)數(shù)的取值范圍是,

的圖象是開(kāi)口向上,對(duì)稱(chēng)軸的拋物線(xiàn),

①當(dāng)時(shí),在區(qū)間上單調(diào)遞增,

,,,

要使最小,只需要,

時(shí),無(wú)解;若時(shí),

解得(舍去)或

(當(dāng)且僅當(dāng)時(shí)取等號(hào));

②當(dāng)時(shí),在區(qū)間上單調(diào)遞減,在遞增,

,,,

要使最小,則,,

解得(舍去)或(當(dāng)且僅當(dāng)時(shí)取等號(hào))

綜上所述,當(dāng)時(shí),的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線(xiàn)的焦點(diǎn),若點(diǎn)在拋物線(xiàn)上,且

求拋物線(xiàn)的方程;

動(dòng)直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn)其中,使得向量與向量共線(xiàn)其中為坐標(biāo)原點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,AD=2,E,F為線(xiàn)段AB的三等分點(diǎn),G、H為線(xiàn)段DC的三等分點(diǎn).將長(zhǎng)方形ABCD卷成以AD為母線(xiàn)的圓柱W的半個(gè)側(cè)面,ABCD分別為圓柱W上、下底面的直徑.

Ⅰ)證明:平面ADHF⊥平面BCHF;

(Ⅱ)若PDC的中點(diǎn),求三棱錐HAGP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為三次函數(shù),且其圖象關(guān)于原點(diǎn)對(duì)稱(chēng),當(dāng)時(shí),的極小值為-1,則

(1)函數(shù)的解析式__________

(2)函數(shù)的單調(diào)遞增區(qū)間為___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)高鐵的快速發(fā)展給群眾出行帶來(lái)巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會(huì)發(fā)展.已知某條高鐵線(xiàn)路通車(chē)后,發(fā)車(chē)時(shí)間間隔(單位:分鐘)滿(mǎn)足,經(jīng)測(cè)算,高鐵的載客量與發(fā)車(chē)時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿(mǎn)載狀態(tài),載客量為人;當(dāng)時(shí),載客量會(huì)在滿(mǎn)載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車(chē)時(shí)間間隔為分鐘時(shí)的載客量為.記發(fā)車(chē)間隔為分鐘時(shí),高鐵載客量為.

的表達(dá)式;

若該線(xiàn)路發(fā)車(chē)時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1=2a2=4,且當(dāng)n≥2時(shí),an2=an-1an+1;

1)求數(shù)列{an}的通項(xiàng)公式an

2)若bn=2n-1an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 為正三角形, , 為棱的中點(diǎn).

(1)求證:平面平面;

(2)若直線(xiàn)與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法正確的是( )

A. 命題“若,則”的否命題為:“若

B. 為真命題,為假命題,則均為假命題

C. 命題“若成等比數(shù)列,則”的逆命題為真命題

D. 命題“若,則”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為為其前項(xiàng)和,且滿(mǎn)足

.?dāng)?shù)列滿(mǎn)足,為數(shù)列的前n項(xiàng)和.

(1)、;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案