某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,則抽取的2所學(xué)校均為小學(xué)的概率為
 
考點(diǎn):古典概型及其概率計(jì)算公式
專(zhuān)題:概率與統(tǒng)計(jì)
分析:利用分層抽樣和古典概率計(jì)算公式求解.
解答: 解:采取分層抽樣的方法從這些學(xué)校抽取6所學(xué)校,
則小學(xué)抽取
6
42
×21
=3所,
中學(xué)抽取
6
42
×14
=2所,
大學(xué)抽取
6
42
×7
=1所,
∴從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
則抽取的2所學(xué)校均為小學(xué)的概率:
p=
C
2
3
C
2
6
=
3
15
=
1
5

故答案為:
1
5
點(diǎn)評(píng):本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要注意分層抽樣的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z=1-i,w=(2-i)
.
z
-2
(Ⅰ)求|w|;
(Ⅱ)如果aw-b=
2i
z
(a,b∈R),求2a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=
2
3
π,在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c.
(1)若b-a=c-b=2.求c的值;
(2)若c=
3
,∠ABC=θ,試用θ表示△ABC的周長(zhǎng),并求周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解高一學(xué)生的身體發(fā)育情況,打算在高一年級(jí)29個(gè)班的某兩個(gè)班按男女生比例抽取樣本,正確的抽樣方法是(從“隨機(jī)抽樣、分層抽樣、先用抽簽法,再分層抽樣、先用分層抽樣,再用隨機(jī)數(shù)表法”中選一個(gè)填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角三角形ABC中,∠A=90°,過(guò)A作BC邊的高AB,有下列結(jié)論
1
AD2
=
1
AB2
+
1
AC2
.請(qǐng)利用上述結(jié)論,類(lèi)似地推出在空間四面體O-ABC中,若OA⊥OB,OA⊥OC,OB⊥OC,O點(diǎn)到平面ABC的高為OD,則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

輸入正整數(shù)n(n≥2)和數(shù)據(jù)a1,a2,…,an,如果執(zhí)行如圖的程序框圖,輸出的s是數(shù)據(jù)a1,a2,…,an的平均數(shù),則框圖的處理框★中應(yīng)填寫(xiě)的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
a+i
1-i
(a∈R),i是虛數(shù)單位)是純虛數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=(a2-2a)+(a-2)i為純虛數(shù),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
log2(1-x)+1,-1≤x<0
x3-3x+2,0≤x≤a
的值域是[0,2],則實(shí)數(shù)a的取值范圍是( 。
A、(0,1]
B、[1,
3
]
C、[1,2]
D、[
3
,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案