【題目】已知雙曲線的焦點(diǎn)在x軸上,焦距為,實(shí)軸長為2

(1)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程。

(2)若點(diǎn) 在該雙曲線上運(yùn)動(dòng),且, ,求以 , 為相鄰兩邊的平行四邊形 的頂點(diǎn) 的軌跡.

【答案】(1)雙曲線的方程為 ,漸近線方程為 (2)

【解析】試題分析:(1)根據(jù)焦距為 可得由實(shí)軸長為 可得 ,從而可得于是可得雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;(2)設(shè)點(diǎn) 的坐標(biāo)為 ,點(diǎn) 的坐標(biāo)為 ,則線段 的中點(diǎn) 的坐標(biāo)為 根據(jù)平行四邊形的性質(zhì)可得 所以 ,代入雙曲線方程得結(jié)果.

試題解析:(1)由題意可知,所以,所以雙曲線的方程為

,漸近線方程為;

(2)設(shè)點(diǎn) 的坐標(biāo)為 ,點(diǎn) 的坐標(biāo)為

則線段 的中點(diǎn) 的坐標(biāo)為

由平行四邊形的性質(zhì),點(diǎn) 也是線段 的中點(diǎn),

所以有

因此 可用 , 表示,得

又由于 在曲線 上,因此,

①代入②,得

因?yàn)槠叫兴倪呅尾豢赡苡袃蓚(gè)以上的頂點(diǎn)在一條直線上,

所以動(dòng)點(diǎn) 的軌跡是除去兩點(diǎn) , 的曲線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,準(zhǔn)線為,三個(gè)點(diǎn) 中恰有兩個(gè)點(diǎn)在上.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)過的直線交, 兩點(diǎn),點(diǎn)上任意一點(diǎn),證明:直線, , 的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線 的右焦點(diǎn)為 ,右頂點(diǎn)為 ,( 為原點(diǎn))

(1)求雙曲線 的方程;

(2)若直線 與雙曲線恒有兩個(gè)不同的交點(diǎn) ,且,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知短軸長為2的橢圓直線的橫、縱截距分別為,且原點(diǎn)到直線的距離為

1)求橢圓的方程;

2)直線經(jīng)過橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn),若橢圓上存在一點(diǎn)滿足,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,且過點(diǎn).

(1)求橢圓的方程;

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn), 且為坐標(biāo)原點(diǎn))?若存在,寫出該圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求的值;

(2)已知在定義域上為減函數(shù),若對(duì)任意的,不等式為常數(shù))恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案