【題目】已知焦點在軸上的橢圓的中心是原點,離心率為雙曲線離心率的一半,直線被橢圓截得的線段長為.直線 軸交于點,與橢圓交于兩個相異點,且.

(1)求橢圓的方程;

(2)是否存在實數(shù),使?若存在,求的取值范圍;若不存在,請說明理由.

【答案】() ;()

【解析】試題分析:(Ⅰ)設(shè)出橢圓的標(biāo)準(zhǔn)方程,利用離心率、四邊形的周長進行求解;(Ⅱ)利用平面向量的線性運算得到的關(guān)系,聯(lián)立直線與橢圓的方程,得到關(guān)于的一元二次方程,利用橢圓的對稱性、平面向量的坐標(biāo)運算和判別式進行求解.

試題解析:()根據(jù)已知設(shè)橢圓的方程為,焦距為,

由已知得,.

以橢圓的長軸和短軸為對角線的四邊形的周長為,

.

橢圓的方程為.

)根據(jù)已知得,由,得.

.,,

,由橢圓的對稱性得,即.

能使成立.

,則,解得.

設(shè),由

由已知得,即.

.…10

,即.,

,即.

當(dāng)時, 不成立.,

,,.

,解得.

綜上述,當(dāng)時, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)的底數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若,當(dāng)對任意恒成立時, 的最大值為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)在數(shù)列中,對于任意,等式

成立,其中常數(shù).

(Ⅰ)求的值;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)如果關(guān)于n的不等式的解集為

,求b和c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為(a+1)xy+2-a=0(a∈R).

(Ⅰ)若直線l不經(jīng)過第二象限,求實數(shù)a的取值范圍;

(Ⅱ)若直線l與兩坐標(biāo)軸圍成的三角形面積等于2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行一元錢,一片心,誠信用水活動,學(xué)生在購水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:

售出水量x(單位:箱)

7

6

6

5

6

收益y(單位:元)

165

142

148

125

150

(1)求y關(guān)于x的線性回歸方程;

(2)預(yù)測售出8箱水的收益是多少元?

附:回歸直線的最小二乘法估計公式分別為: =, =,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在區(qū)間上的函數(shù)的圖象為, 、,且為圖象上的任意一點, 為坐標(biāo)原點,當(dāng)實數(shù)滿足時,記向量,若恒成立,則稱函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)下線性近似,其中是一個確定的正數(shù).

(1)設(shè)函數(shù)在區(qū)間上可在標(biāo)準(zhǔn)下線性近似,求的取值范圍;

(2)已知函數(shù)的反函數(shù)為,函數(shù),( ),點,記直線的斜率為,若,問:是否存在,使成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國慶節(jié)進行社會實踐,對[25,55]歲的人群隨機抽取人進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

[2530)

120

0.6

第二組

[30,35)

195

第三組

[3540)

100

0.5

第四組

[40,45)

0.4

第五組

[45,50)

30

0.3

第六組

[50,55]

15

0.3

(1)補全頻率分布直方圖并求 的值;

(2)從年齡段在[4050)低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領(lǐng)隊,求選取的2名領(lǐng)隊中恰有1人年齡在[40,45)歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

當(dāng),的單調(diào)遞減區(qū)間;

若函數(shù)有唯一的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.

1求AD邊所在直線的方程;

2求矩形ABCD外接圓的方程.

查看答案和解析>>

同步練習(xí)冊答案