某高中有高一、高二、高三共三個(gè)學(xué)年,根據(jù)學(xué)生的綜合測評分?jǐn)?shù)分為學(xué)優(yōu)生和非學(xué)優(yōu)生兩類,某月三個(gè)學(xué)年的學(xué)優(yōu)生和非學(xué)優(yōu)生的人數(shù)如表所示(單位:人),若用分層抽樣的方法從三個(gè)學(xué)年中抽取50人,則高一共有10人.
高一學(xué)年 高二學(xué)年 高三學(xué)年
學(xué)優(yōu)生 100 150 z
非學(xué)優(yōu)生 300 450 600
(1)求z的值;
(2)用隨機(jī)抽樣的方法從高二學(xué)年學(xué)優(yōu)生中抽取8人,經(jīng)檢測他們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8人的得分看作一個(gè)總體,從中任取一個(gè)分?jǐn)?shù)a.記這8人的得分的平均數(shù)為
.
x
,定義事件E={|a-
.
x
|≤0.5,且f(x)=ax2-ax+2.31沒有零點(diǎn)},求事件E發(fā)生的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,分層抽樣方法,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計(jì)
分析:第(1)問涉及分層抽樣知識,第(2)問涉及古典概型與平均數(shù)的計(jì)算.
解答: 解:(1)根據(jù)分層抽樣的特征,有
400
1600+z
=
10
50
,
解得z=400.
(2)由題意,
.
x
=9

由|a-
.
x
|≤0.5,得8.5≤a≤9.5.
由f(x)=ax2-ax+2.31沒有零點(diǎn),得0<a<9.24.
所以,符合上述兩個(gè)條件的a=8.6,9.2,8.7,9.0,共4個(gè)值,
故所求概率為P=
4
8
=
1
2
點(diǎn)評:本題考查了抽樣方法與古典概型知識,屬基礎(chǔ)題.掌握了分層抽樣的特征與古典概型概率計(jì)算公式即可正確求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α=2,則點(diǎn)P(sinα,tanα)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,CA=CB,A1B1∥AB,AB=2A1B1,E,F(xiàn)分別是AB,AC1的中點(diǎn).
(Ⅰ)求證:EF∥平面BB1C1C;
(Ⅱ)求證:C1A1⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E為PC的中點(diǎn).
(1)求證:AP∥平面BDE;
(2)求證:BE⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn滿足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+x2-ax(a∈R).
(1)當(dāng)a=0時(shí),求與直線x-y-10=0平行,且與曲線y=f(x)相切的直線的方程;
(2)求函數(shù)g(x)=
f(x)
x
-alnx(x>1)的單調(diào)遞增區(qū)間;
(3)如果存在a∈[3,9],使函數(shù)h(x)=f(x)+f′(x)(x∈[-3,b])在x=-3處取得最大值,試求b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱臺ABCD-A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:BD⊥平面ADD1A1;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,命題p:對任意x∈[-1,1],不等式2x-1≥m2-4m恒成立;命題q:存在 x∈[-1,1],使得ax≥m成立.
(Ⅰ)若p為真命題,求m的取值范圍.
(Ⅱ)當(dāng)a=2,若p∧q為假,p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的一條對稱軸是直線x=
π
8
;
(1)求φ得值;
(2)求y=f(x)得單調(diào)增區(qū)間;
(3)x∈(0,
π
4
),求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案