在1,2,3,4,5的所有排列a1,a2,a3,a4,a5中,
(1)求滿足a1<a2,a2>a3,a3<a4,a4>a5的概率;
(2)記ξ為某一排列中滿足ai=i(i=1,2,3,4,5)的個數(shù),求ξ的分布列和數(shù)學(xué)期望.
分析:(1)本題是一個古典概型,試驗發(fā)生包含的所有的排列種數(shù)有A55.滿足條件的事件中,若a1,a3,a5取集合{1,2,3}中的元素,a2,a4取集合{4,5}中的元素,都符合要求,若a1,a3,a5取集合{1,2,4}中的元素,a2,a4取集合{3,5}中的元素,列舉出結(jié)果,得到概率.
(2)ξ為某一排列中滿足ai=i(i=1,2,3,4,5)的個數(shù),由題意知ξ可以取0,1,2,3,5.結(jié)合變量對應(yīng)的事件,寫出變量的分布列,和期望.
解答:解:(1)由題意知,本題是一個古典概型,
試驗發(fā)生包含的所有的排列種數(shù)有A55=120個.
滿足a1<a2,a2>a3,a3<a4,a4>a5的排列中,
若a1,a3,a5取集合{1,2,3}中的元素,a2,a4取集合{4,5}中的元素,都符合要求,有A33A22=12個.
若a1,a3,a5取集合{1,2,4}中的元素,a2,a4取集合{3,5}中的元素,
這時符合要求的排列只有1,3,2,5,4;2,3,1,5,4;4,5,1,3,2;4,5,2,3,1共4個.
故滿足條件的概率P=
A
3
3
A
2
2
+4
A
5
5
=
2
15

(2)隨機變量ξ可以取0,1,2,3,5.
P(ξ=5)=
1
A
5
5
=
1
120
,
P(ξ=3)=
C
3
5
A
5
5
=
1
12
,
P(ξ=2)=
2
C
2
5
A
5
5
=
1
6

P(ξ=1)=
9
C
1
5
A
5
5
=
3
8
,
P(ξ=0)=1-
1+
C
3
5
+2
C
2
5
+9
C
1
5
A
5
5
=
11
30

∴ξ的分布列為
精英家教網(wǎng)
∴ξ的數(shù)學(xué)期望Eξ=0×
11
30
+1×
3
8
+2×
1
6
+3×
1
12
+5×
1
120
=1
點評:求離散型隨機變量的分布列和期望是近年來理科高考必出的一個問題,題目做起來不難,運算量也不大,只要注意解題格式就問題不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、在1,2,3,4,5這五個數(shù)字組成的沒有重復(fù)數(shù)字的三位數(shù)中,各位數(shù)字之和為奇數(shù)的共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相鄰兩數(shù)都互質(zhì)的排列方式種數(shù)共有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相鄰兩數(shù)都互質(zhì)的排列方式種數(shù)共有
864
864

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,4,5這五個數(shù)字所組成的沒有重復(fù)數(shù)字的三位數(shù)中,其中各個位上數(shù)字之和為9的三位數(shù)共有
12
12
個(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在1,2,3,4,5這五個數(shù)中任取三個組成數(shù)字不重復(fù)的三位數(shù),則所有三位數(shù)的和為
 
(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案