已知直線l1:x-
3
y+1=0,l2:x+ty+1=0,若直線l1與l2的夾角為60°,則t=
 
考點(diǎn):兩直線的夾角與到角問題
專題:直線與圓
分析:由條件利用兩條直線的夾角公式求得t的值.
解答: 解:直線l1的斜率為
3
3
,l2的斜率為-
1
t

由兩條直線的夾角公式可得tan60°=|
3
3
-(-
1
t
)
1+
3
3
×(-
1
t
)
|
=
3
,
求得t=0,或t=
3

故答案為:t=0,或t=
3
點(diǎn)評(píng):本題主要考查兩條直線的夾角公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題
①已知
.
a
.
b
,則
.
a
•(
.
b
+
.
c
)+
.
c
•(
.
b
-
.
a
)=
.
b
.
c
;
②A、B、M、N為空間四點(diǎn),若
BA
BM
BN
不構(gòu)成空間的一個(gè)基底,則A、B、M、N共面;
③已知
.
a
.
b
,則
a
,
b
與任何向量不構(gòu)成空間的一個(gè)基底;
④已知{
.
a
,
.
b
,
.
c
}是空間的一個(gè)基底,則基向量
a
,
b
可以與向量
.
m
=
.
a
+
.
c
構(gòu)成空間另一個(gè)基底.其中所有正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(t,2)在不等式組
x+y≤4
y≥x
x≥1
所表示的平面區(qū)域內(nèi)運(yùn)動(dòng),l為過點(diǎn)P和坐標(biāo)原點(diǎn)O的直線,則l的斜率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是非零實(shí)數(shù),若a<b,則不等式a2<b2;ab2<a2b;
1
ab2
1
a2b
b
a
a
b
中成立的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從長度為2、3、5、6的四條線段中任選三條,能構(gòu)成三角形的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,AB=2,D為圓O上一點(diǎn),過D作圓O的切線交AB的延長線于點(diǎn)C.若DA=DC,則∠BDC=
 
;BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
0.2x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩名學(xué)生選修4門課程(每門課程被選中的機(jī)會(huì)相等),要求每名學(xué)生必須選1門且只需選1門,則他們選修的課程互不相同的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在復(fù)平面內(nèi),復(fù)數(shù)z1,z2對應(yīng)的向量分別是
OA
,
OB
,則|z1+z2|=( 。
A、1
B、
5
C、2
D、3

查看答案和解析>>

同步練習(xí)冊答案