已知雙曲線與橢圓數(shù)學(xué)公式有共同的焦點(diǎn),且以數(shù)學(xué)公式為漸近線.
(1)求雙曲線方程.
(2)求雙曲線的實(shí)軸長(zhǎng).虛軸長(zhǎng).焦點(diǎn)坐標(biāo)及離心率.

(本小題滿分13分)
解:(1)由橢圓?c=5.….(2分)
設(shè)雙曲線方程為,則
故所求雙曲線方程為….(9分)
(2)雙曲線的實(shí)軸長(zhǎng)2a=6.虛軸長(zhǎng)2b=8.焦點(diǎn)坐標(biāo)(-5,0),(5,0)離心率e=5/3….(13分)
分析:(1)由橢圓可求c=5,設(shè)雙曲線方程為,則,解方程可求a,b,進(jìn)而可求雙曲線方程
(2)雙曲線的實(shí)軸長(zhǎng)2a.虛軸長(zhǎng)2b.焦點(diǎn)坐標(biāo)(-c,0),(c,0)離心率e=
點(diǎn)評(píng):本題主要考查了利用雙曲線的性質(zhì)求解雙曲線的方程及由方程進(jìn)一步研究其它性質(zhì),屬于雙曲線性質(zhì)的基本考查
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線與橢圓
x2
4
+y2=1
共焦點(diǎn),它們的離心率之和為
3
3
2
;
(1)求橢圓與雙曲線的離心率e1、e2
(2)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線和橢圓有相同的焦點(diǎn),兩曲線在第一象限內(nèi)的交點(diǎn)為,橢圓軸負(fù)半軸交于點(diǎn),且三點(diǎn)共線,分有向線段的比為,又直線與雙曲線的另一交點(diǎn)為,若

(1)求橢圓的離心率;

(2)求雙曲線和橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省三明九中高二(上)第二次月考數(shù)學(xué)試卷(美術(shù)班)(解析版) 題型:填空題

已知雙曲線與橢圓共焦點(diǎn),它們的離心率之和為;
(1)求橢圓與雙曲線的離心率e1、e2
(2)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;
(3)已知直線與橢圓有兩個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年浙江省溫州市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線的中心在原點(diǎn)O,其中一條準(zhǔn)線方程為,且與橢圓有共同的焦點(diǎn).
(1)求此雙曲線的標(biāo)準(zhǔn)方程;
(2)(普通中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),試問(wèn):是否存在實(shí)數(shù)k,使得以弦AB為直徑的圓過(guò)點(diǎn)O?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
(重點(diǎn)中學(xué)學(xué)生做)設(shè)直線L:y=kx+3與雙曲線交于A、B兩點(diǎn),C是直線L1:y=mx+6上任一點(diǎn)(A、B、C三點(diǎn)不共線)試問(wèn):是否存在實(shí)數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案