投擲質(zhì)地均勻的紅、藍(lán)兩顆骰子,觀察出現(xiàn)的點(diǎn)數(shù),并記紅色骰子出現(xiàn)的點(diǎn)數(shù)為m,藍(lán)色骰子出現(xiàn)的點(diǎn)數(shù)為n.試就方程組
x+2y=2
mx+ny=3
解答下列問題.
(Ⅰ)求方程組只有一個(gè)解的概率;
(Ⅱ)求方程組只有正數(shù)解的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(1)由題意知本題是一個(gè)古典概型,事件(m,n)的基本事件有36個(gè),方程組只有一個(gè)解,需滿足2m-n≠0,即n≠2m,而n=2m的事件有(1,2),(2,4),(3,6)共3個(gè),根據(jù)古典概型概率公式得到結(jié)果.
(2)由題意知本題是一個(gè)古典概型,事件(m,n)的基本事件有36個(gè),方程組只有正數(shù)解整理出結(jié)果,列舉出所有滿足條件的事件,根據(jù)概率公式得到結(jié)果.
解答: 解:(1)由題意知本題是一個(gè)古典概型,事件(m,n)的基本事件有36個(gè),
由方程組
x+2y=2
mx+ny=3

可得
(2m-n)x=6-2n
(2m-n)y=2m-3

方程組只有一個(gè)解,需滿足2m-n≠0,
即n≠2m,而n=2m的事件有(1,2),(2,4),(3,6)共3個(gè),
所以方程組只有一個(gè)解的概率為P1=1-
3
36
=
11
12

(2)方程組只有正數(shù)解,需2m-n≠0且
x=
6-2n
2m-n
>0
y=
2m-3
2m-n
>0

2m>n
a>
3
2
b<3
2m<n
a<
3
2
b>3

其包含的事件有13個(gè):(2,1),(3,1),(4,1),(5,1),(6,1),
(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6).
∴所求的概率為
13
36
點(diǎn)評(píng):本題考查古典概型,考查解方程組,是一個(gè)綜合題,概率問題往往同其他的知識(shí)點(diǎn)結(jié)合在一起,實(shí)際上是以概率問題為載體,主要考查的是另一個(gè)知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖.若輸入a=3,則輸出i的值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
2
+y2=1,點(diǎn)M1,M2…,M5為其長軸AB的6等分點(diǎn),分別過這五點(diǎn)作斜率為k(k≠0)的一組平行線,交橢圓C于P1,P2,…,P10,則直線AP1,AP2,…,AP10這10條直線的斜率乘積為( 。
A、-
1
16
B、-
1
32
C、
1
64
D、-
1
1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)是對(duì)一切正整數(shù)n有定義的函數(shù),且f(1)=1,f(n)=(-1)k(n>1,k是n的素約數(shù)的個(gè)數(shù)),設(shè)d是n的約數(shù),令F(n)為對(duì)n的一切約數(shù)d的函數(shù)f(d)求和,求F(9)和F(2011).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有甲、乙、丙三人參加某電視臺(tái)的應(yīng)聘節(jié)目《非你莫屬》,若甲應(yīng)聘成功的概率為
1
2
,乙、丙應(yīng)聘成功的概率均為
t
2
(0<t<2),且三個(gè)人是否應(yīng)聘成功是相互獨(dú)立的.
(Ⅰ)若乙、丙有且只有一個(gè)人應(yīng)聘成功的概率等于甲應(yīng)聘成功是相互獨(dú)立的,求t的值;
(Ⅱ)記應(yīng)聘成功的人數(shù)為ξ,若當(dāng)且僅當(dāng)ξ為2時(shí)概率最大,求E(ξ)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=
3
sinxcosx+sin2x+
1
2
(x∈R)
(1)當(dāng)x∈[-
π
12
12
]時(shí),求函數(shù)f(x)的最小值和最大值;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=
3
,f(C)=2,若向量
m
=(1,a)與向量
n
=(2,b)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求定積分
1
-1
f(x)dx,其中f(x)=
sinx-1  (x≤0)
x2   (x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)四面體的全面積為S,四個(gè)面面積最大者記為S1,求
S
S1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

節(jié)日期間,高速公路車輛較多,某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的順序,隨機(jī)抽取第一輛汽車后,每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下圖的頻率分布直方圖.
(Ⅰ)請(qǐng)直接回答這種抽樣方法是什么抽樣方法?并估計(jì)出這40輛車速的中位數(shù);
(Ⅱ)設(shè)車速在[80,85)的車輛為A1,A2,…,An(m為車速在[80,85)上的頻數(shù)),車速在[85,90)的車輛為B1,B2,…,Bn(n為車速在[85,90)上的頻數(shù)),從車速在[80,90)的車輛中任意抽取2輛共有幾種情況?請(qǐng)列舉出所有的情況,并求抽取的2輛車的車速都在[85,90)上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案